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Abstract
Lipopolysaccharide (LPS) is an important compound with pathogenic proper-
ties. LPS is considered a bacterial endotoxin, and the body induces widespread 
inflammation responses by stimulating the immune system through blood 
cells and synthesizing proinflammatory cytokines. After entering the circulation, 
these proinflammatory cytokines affect different body organs and induce sys-
tematic inflammation. Proinflammatory cytokines also enter the brain through 
the periventricular hypothalamus (PeVH) and by affecting microglia and as-
trocytes; they stimulate the brain’s immune response. After the induction of 
systemic and central inflammation, the animal sickness behavior appears. In 
this review, we are going to investigate the peripheral and central effects of 
LPS-induced inflammation on different animal species.

Keywords: Animal sickness behaviors; Lipopolysaccharide; Periventricular hypothalamus; 
Inflammation; Proinflammatory cytokines.
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Note to readers:
For your convenience, this article includes an alphabetical list of abbrevia-
tions. Please refer to this list if you encounter any abbreviations that you are 
unsure of while reading the article.

List of abbreviations
AA: Arachidonic acid.
Ach: Acetylcholine.
AchE: Acetylcholinesterase.
APR: Acute phase response.
ARC: Arcuate nucleus.
BBB: Blood-brain-barrier.
CBF: Cerebral blood flow. 
CNS: Central nervous system.
CRF: Corticotropin-releasing factor.
HPA: Hypothalamic-pituitary-adrenal.
ICV: Intracerebroventricular.
IDO: Indoleamine 2,3-deoxygenase.
ILs: Interleukins.
IP: Intraperitoneal.
IV: Intravenous.
LHA: Lateral hypothalamus area.
LPS: Lipopolysaccharide.
LTP: Long-term potentiation. 
LTs: Leukotrienes.
NF-ƙβ: Nuclear factor-ƙβ.
NO: Nitric oxide.
NOS: Nitric oxide synthesis.
NPY: Neuropeptide Y.
PeVH: Periventricular hypothalamus.
PGE2: Prostaglandin E2.
PVN: Paraventricular nucleus.
ROS: Reactive oxygen species.
sPLA2-IIA: Secretory phospholipase A2-IIA.
TL1A: TNF-like ligand 1A.
TNF-α: Tumor necrosis factor-α.
WBC: White blood cell.
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Study contribution
LPS endotoxin is used to investigate the body’s immune response to harmful 
pathogens, especially pathogens that are normally associated with living organisms. 
Then the body’s peripheral and central response to it is measured. By entering the 
body, LPS causes the release of environmental proinflammatory cytokines into the 
systemic circulation. Then these cytokines enter the central nervous system through 
blood circulation and periventricular hypothalamus nucleus. After that, by affecting 
different brain areas, including the hypothalamus nuclei, it causes inflammation, 
infection, and widespread central responses in the body.

Introduction
Inflammation is the body’s natural response to pathological disorders or changes 
in the physiological state of the body.(1, 2) Inflammation caused by a wide range of 
pathogens has almost the same central reactions.(3) These central reactions include 
changes in behavioral patterns. These behavioral patterns are considered animal 
sickness behavior. Animal sickness behavior includes decreased food and water 
intake, body weight,(3) fever induction, sleep deprivation, inactivation, deficits in 
memory and learning,(4) and neuroendocrine changes.(5) Animal sickness behavior 
patterns also include changes in blood parameters,(6) induction of neuroinflamma-
tion,(7) effect on the level of different brain neurotransmitters,(8) and behavioral 
changes such as depressive-like behavior,(9) fatigue,(10) anxiety-like behavior,(11) 

anhedonia,(12) and lethargy.(13)

These animal sickness behaviors reduce energy consumption to perform activ-
ities, and store energy for defending the body and recovering from the disease.(4) 
Thus, anorexia is beneficial early in the disease, but prolonged anorexia delays re-
covery.(14) Identifying these animal sickness behaviors in animals helps to diagnose 
and treat inflammation promptly.(15) Systematically and centrally applied lipopoly-
saccharide (LPS) induces acute phase response (APR), and animal sickness behav-
ior (Figure 1).(16, 17) APR occurs in the liver and brain and induces the expression of 
proinflammatory cytokines in these two organs. The response of the liver and brain 
to proinflammatory mediators is different.(18, 19) The liver is directly exposed to LPS, 
and Kupffer cells respond to LPS-induced inflammation by secreting proinflamma-
tory cytokines.(20) The brain is not directly exposed to LPS due to the presence 
of the blood-brain-barrier (BBB). The periventricular hypothalamus (PeVH) does 
not have a BBB, but it has receptors for leukotrienes (LTs), and interleukins (ILs). 
Therefore, proinflammatory cytokines in this way induce infection in the brain and 
especially the hypothalamus.(21, 22) LPS reaction in mammalian species related to 
species and individual dependent. Birds’ responses to inflammation and infection 
are nearly identical to mammals’.(23, 24) The central effect of inflammation on be-
havioral changes is conducted by the central nervous system (CNS) microglia, and 
astrocytes.(2, 25)
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Figure 1. a) Animal sickness behavior patterns caused by proinflammatory, and anti-inflammatory cytokines. b) Pathways 
related to the immune system and central nervous system (CNS) in inflammation state. Leukemia inhibitory factor (LIF) is 
required for hypothalamic stress response which is related to interleukin 6 (IL-6)(26). The nerve vagus is the link between 
the immune system and the CNS. Proinflammatory. Anti-inflammatory.
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Lipopolysaccharide is a component of the gram-negative bacteria’s wall.(27) It 
is released as a result of bacterial lysis or the rapid proliferation of bacteria.(28) In 
the structure of LPS, there are O side chains, core, and lipid A.(29) The immuno-
logically active component of LPS is lipid A. Lipid A binds to the toll-like receptor 
4 and starts transcriptions. After that, nuclear factor-ƙβ (NF-ƙβ) excitation and the 
expression of inflammatory genes occur.(30) Then, proinflammatory cytokines such 
as IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) enter the circulation. So, these 
factors affect CNS-induced animal sickness behavior.(31) 

IL-1β and IL-6 responses to inflammation are different, as well as the different 
signaling cascades effects. IL-1β acts through the NF-ƙβ pathway,(32) while IL-6 
acts as, and signal transducer and activator of the transcription three pathway.(33) 
Proinflammatory cytokines and their receptors are distributed in different parts of 
the digestive tract, as well as in various parts of the brain, including the hypothala-
mus. During general inflammation, the body’s immune system passages respond 
related to CNS inflammation through the vagus nerve and the circumventricular 
organ. Then CNS issues the necessary response by synthesis of proinflammatory 
cytokines.(34) The effects of LPS on laboratory animals are different (35−38). These 
effects are influenced by drug dose, number of injected doses, bacterial source, 
and injection methods (Table 1).(39, 40)

LPS is the most available compound for investigating sickness behavior in dif-
ferent animal models;(35−38) of LPS-induced systemic and central inflammation. 
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https://veterinariamexico.fmvz.unam.mx/


http://veterinariamexico.fmvz.unam.mx
6

/
26

Impact of lipopolysaccharide on physiological responses Review Articles

doi: 10.22201/fmvz.24486760e.2025.1287
Vol. 12  2025

Table 1. The effects of lipopolysaccharide on central and peripheral physiological responses

Substance Type 
organism

Administration 
type Dosage Action (s) Action 

mechanism (s) Ref

Escherichia coli LPS Chicken IV 1 500 000 ug/kg Hypotension NO (6)

Escherichia coli LPS Chicken IV 1 500 000 ug/kg Hypotension NO (6)

Escherichia coli LPS Rat ICV 5 µg/5 µL Learning disorder Induced oxidative 
stress, and 

neuroinflammation

(7)

Salmonella typhimurium 
LPS

Chicken IV 5 mg/kg Diarrhea Increased IL-6 (24)

Escherichia coli LPS Pigs IV 1.2 µg/kg Hypophagia IL-1, IL-6, IL-8, and 
TNF-α

(31)

Escherichia coli LPS Pigs IV 1.2 µg/kg Depression Dopamine, and 
noradrenalin 

(31)

Escherichia coli LPS Chicken IV 5 mg/kg body 
weight

Hyperthermia Increased IL-1 
synthesis in liver

(41)

Escherichia coli LPS Chicken IV 5 mg/kg Decreased body 
weight

Increased IL-1 (41)

Escherichia coli LPS Rat IV 100 µg/kg Hyperthermia NOS synthesis 
induction

(42)

Escherichia coli LPS Chicken ICV 20 ng/10 µL Hypophagia c-FOS expression 
increased, and NPY 

decreased

(43)

Escherichia coli LPS Rats IP 5 mg/kg Anxiety Increasing the level 
of tau proteins, and 
decreasing BDNF

(44)

Escherichia coli LPS Mice IP 0.33 mg/kg Anhedonia Increased 
proinflammatory 

cytokine, and 
indoleamine 2,3 

dioxygenase

(45)

Escherichia coli LPS Rat ICV 50 µg/20 µL Neuroinflammation Increased AchE 
activity 

(46)

IV: Intravenous. ICV: Intracerebroventricular. IP: Intraperitoneal.
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This inflammation affects different organs, and symptoms of animal sickness behavior appear.(47) 
So far, a comprehensive study on the effects of LPS on different organs, animal sickness behavior, 
and body physiological responses has not been done. Therefore, the current review article exam-
ines this response to LPS-induced inflammation. 

Study design
This review article studied multiple credible papers from electronic sources. Authentic papers 
indexed in the Web of Science, Scopus, PubMed, SID, Google Scholar, and ISI databases via the 
keywords below: lipopolysaccharide, inflammation, animal sickness behavior, food intake, body 
temperature, body weight, memory, learning, central nervous system, depressive-like behavior, 
fatigue, anxiety-like behavior, anhedonia, and lethargy.

Central lipopolysaccharide effects on food intake 
The central control of feeding is a complex process in which different parts of the brain, especially 
the hypothalamus, are involved. The hypothalamus plays a unique role in regulating food intake 
and energy balance through various neurotransmitters and specialized nuclei.(48−55) The nervous, 
immune, and neuro-endocrine systems are involved in the central control of feeding. Therefore, 
substances and compounds that disrupt the balance of these systems also interfere with food 
intake.(56) Anorexia is a clinical symptom associated with pathological conditions such as inflam-
mation and infection.(57) 

Anorexia is part of APR. The main target organ for proinflammatory cytokines to induce  
anorexia is the brain. Proinflammatory cytokines play an essential role in inflammation- 
induced anorexia.(14, 57) These substances are synthesized both in glial cells and neurons(58) and 
enter the brain through the BBB, and periventricular organs.(59) LPS is one of the compounds 
that induce inflammation and subsequently anorexia, and hypophagia in pigs, mammals, and  
birds.(31, 60) This reduction can be due to the appetite-reducing effects of proinflammatory cyto-
kines such as IL-1, IL-6, IL-8, IL-10, and TNF-α.(61) 

LPS in the brain stimulates glial cells through TLR4. Then IL-1, IL-1β, IL-6, IL-10, IL-8, and 
TNF-α are released from glial cells. These ILs express enzymes that decompose arachidonic acid 
(AA) into prostaglandin and thromboxane. Therefore, these compounds affect CNS-expressed 
animal sickness behavior such as decreased feeding.(60, 62, 63) Centrally and peripheral adminis-
tration of LPS reduced feeding.(26, 64) The results of several studies have shown that LPS exerts 
its central reducing effect on food intake through two pathways.(14) LPS stimulates the release of 
proinflammatory cytokines in different brain regions,(65) especially the arcuate nucleus (ARC).(66) 

The ARC is the most important nucleus in controlling food consumption and energy balan –
ce.(67) In this nucleus, through IL receptor-1, LPS stimulates the expression of c-FOS in proop-
iomelanocortin neurons,(68) and corticotropin in corticotropin-releasing factor (CRF) neurons in 
the ARC, and paraventricular nucleus (PVN). Also, prostaglandin E2 (PGE2) inhibits the release 
of neuropeptide Y (NPY) through the NPY1 receptor and finally reduces food intake.(26, 64) Also 
during stress and sickness state, CRF secreted from the PVN causes the release of adrenocor-
ticotropin hormone from the anterior pituitary. This hormone mediates the hypophagia effects 
of LPS by acting on the adrenal gland and secreting corticosteroids.(28, 69) Nitric oxide (NO) is 
a neuromodulator that plays a role in LPS-induced central anorexia. NO induces anorexia during 
LPS-induced inflammation by inhibiting ghrelin orexigenic neurons of the ARC.(70)
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Lipopolysaccharide effects on body weight
The effects of LPS on the animal’s body weight can be different according to the 
species and even the breed of the animal. IV injection of LPS in laying chickens 
induced weight loss in the first 6–24 hours, and animal weights returned to the 
normal range 48 hours after the injection. Also, minor changes in the growth of or-
gans (spleen, heart, adrenals, and liver) were observed.(41) Liver enlargement can 
result from increased metabolic activity induced by LPS. In endotoxemia, the liver 
synthesizes and releases IL-1 in birds. After that LPS exerts its harmful effects on the 
body.(24, 41) This LPS-induced weight loss could be due to reduced food intake.(71)

Central lipopolysaccharide effects on body temperature 
Behavioral patterns of temperature changes in response to LPS vary among dif-
ferent animals.. LPS in laying chickens caused hypothermia in the first six hours 
after injection, primary hyperthermia in twelve hours after injection, and secondary  
hyperthermia in 24–48 hours after injection.(72) Broilers have a biphasic tem-
perature response: hypothermia, and hyperthermia. Laying chicks experience 
hypothermia, hypothermia followed by hyperthermia, and hyperthermia with-
out hypothermia.(7, 43, 72) Chickens are very resistant to the effects of LPS, and  
they show different temperature behaviors depending on the dose of LPS. Low 
doses of LPS only produce hyperthermia. Moderate doses cause hypothermia and 
hyperthermia. High doses of LPS cause high and persistent hypothermia,(46, 72) 
before inducing fever.(6, 72) Indicated that IV injection of LPS in pigs first induced 
hypothermia, and then hyperthermia.(73)

LPS increases the expression of IL-I mRNA in chicken liver. The liver is the pri-
mary source of ILs in endotoxemia. LPS has increased the metabolic activity of the 
liver by affecting it. The liver secretes inflammatory acute phase proteins and proin-
flammatory cytokines including IL-1 which cause animal sickness behavior such as 
fever. In birds, IL-1 functions similarly to IL-1β in mammals.(42, 74, 75) In chickens, 3 
hours after receiving LPS, IL-6 serum level elevated. This elevation is just before the 
induction of fever.(76) Proinflammatory cytokines such as IL-1 via sending a signal 
to the brain cause an increase in the level of PGE2. PGE2 is one of the important 
factors inducing fever.(6) PGE2 induces fever by stimulating cold-sensitive neurons 
in the preoptic area of the brain.(77)

NO plays a key role in body temperature regulation. NO exerts this role through 
control of the vasomotor center, thermogenesis through brown fat tissue, and neu-
roendocrine control.(74) In addition to this direct effect, NO exerts its effect on 
body temperature control during endotoxemia through its effect on the release 
of proinflammatory cytokines such as TNF-α, IL-1β, and IL-1. NO exerts its effect 
on the central control of body temperature regulation through the PeVH, PVN, 
and supraoptic nuclei which contain nitric oxide synthesis (NOS) enzyme. NO  
production in these regions during endotoxemia is associated with fever and neu-
roendocrine changes.(42) 

When a fever-causing pathogen (such as LPS) enters the body, white blood 
cells (WBC) with compounds such as TNF-α placed against it. Chickens don’t have 
TNF-α, but they have TNF-like ligand 1A (TL1A). TNF-α in mammals and TL1A in 
chickens cause IL-1β and IL-6 production. 

https://veterinariamexico.fmvz.unam.mx/
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Then, these proinflammatory cytokines, by affecting the CNS, increase the level 
of PGE2 in the brain and fever. TNF-α, IL-1β, and IL-6 are the key blood factors 
responsible for inducing fever.(75) TL1A also increases the level of α1 acid gly-
coprotein, ceruloplasmin, and NO. These compounds develop the inflammation 
process.(76)

LPS-induced hypothermic phase reduces tissue hypoxia.(6) It has a protective 
function in septic shock and protects vital organs of the body.(78) The relationship 
between hypothermia and tissue hypoxia indicates a decrease in heat generation 
in the tissue. Blood pressure also decreases during hypothermia. LPS increases NO 
production by stimulating the activation of NOS.(79, 80) NO reduces the tempera-
ture by dilating blood vessels. After some time, the arterial blood pressure returns to 
normal, and tissue perfusion decreases. As a result, the body temperature gradually 
increases, and fever is induced. Therefore, NO is responsible for lowering blood 
pressure and hypothermia.(73, 81)

Central lipopolysaccharide effects on blood parameters
During inflammation induced by LPS, leukocytes are isolated from the circulation 
and attach to the post-capillary venules endothelium to migrate to the damaged 
tissue. In most cases, leukocytes become trapped in the lung tissue, and unable 
to re-enter circulation.(82, 83) LPS-induced reduction in circulating granulocytes via 
hypothermia. A decrease in blood neutrophils has also been observed in dogs and 
pigs.(6) LPS increases WBC in circulation. 

Additionally, apoptosis increases, and apoptotic cells enter the circulation  
by binding to LPS, reducing its serum concentration and proinflammatory cyto–
kines.(84) So, this increases protective effects against LPS-induced endotoxemia, 
septic shock, and even reduced diffusion of proinflammatory cytokines.(84) As well, 
LPS increased the number of eosinophils heterophils, and other WBCs in broilers. 
The increase in the number of heterophils is due to their important role in the 
normal healing of cells. An increase in the level of leukocytes is also a reason for 
adaptive immunity.(24)

Central lipopolysaccharide effect on the central nervous system
Neuroinflammation is the process of CNS involvement with pathogens. This pro-
cess causes disorders in behavioral patterns such as depressive-like behavior, 
cognitive disorders, and social diseases.(34) Different compounds, including LPS, 
cause neuroinflammation and disorders in behavioral patterns. The most important 
mechanisms of the CNS in the face of neuroinflammation are the increase of reac-
tive oxygen species (ROS) and activation of proinflammatory cytokines, particularly  
IL-1β, IL-6, and TNF-α.(85) 

Also, neuroinflammation reduces cerebral blood flow (CBF). This reduction in 
CBF induces cellular stress and eventually cognitive disorders. The mechanism of 
cell stress induction is as follows: neuroinflammation and disruption of the neu-
rovascular unit reduce CBF. Decreased CBF leads to the accumulation of cellular 
metabolites and the reduction of the release of toxic substances. As a result, the 
amount of ROS increases and leads to the induction of cellular stress. Cellular stress 
can lead to cognitive disorders.(85, 86) 
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Also, neuroinflammation is associated with the degradation of membrane 
phospholipids via secretory phospholipase A2-IIA (sPLA2-IIA). This degradation  
resulted in the synthesis, and release of AA, lysophospholipids, and predecessors 
of proinflammatory mediators including prostaglandins and LTs.(87, 88) sPLA2-IIA 
activation resulted in membrane permeability alternations and interruption of mem-
brane construction.(89) This process caused dysfunctions in CNS and cognitive dis-
orders. These dysfunctions are related to proinflammatory cytokine activation in 
microglia(90) and astrocytes such as TNF-a, IL-1β, and IL-6.(91)

 LPS activates the NF-B pathway by accumulating amyloid-beta plaques in 
the hippocampus.(92) Activating this pathway increases the accumulation of proin-
flammatory cytokines and stimulates the activity of microglia cells. Then, cell death 
occurs in the hippocampus and pathogenic behaviors and cognitive disorders  
arise.(92) The effects of LPS on neuroinflammation and neurotransmitter release 
are mediated by IL-1, IL-6, and TNF-α.(8) In addition to the role in the synthesis  
and release of proinflammatory cytokines, microglia also play a role in the  
synthesis of nitrogen free radicals and ROS. Microglia promote inflammation 
through these pathways.(93) 

Acetylcholine (Ach) is a parasympathetic neurotransmitter; that inhibits the 
release of proinflammatory cytokines from macrophages and microglia.(46) Cholin-
ergic system activity by reducing the production of proinflammatory cytokines plays 
a protective role against the neuroinflammatory process. AchE quickly metabolizes 
Ach. It has been shown that LPS via increasing AchE activity, reduces the activity of 
the cholinergic system. Therefore, removes Ach’s inhibitory effect on neuroinflam-
mation, and promotes neuroinflammation.(46, 94−96)

Also, dopamine is a neurotransmitter that LPS affects and reduces its concen-
tration.(93) In addition to affecting the brain’s reward system, dopamine also affects 
the stress control centers, including the hypothalamic-pituitary-adrenal (HPA) axis. 
Therefore, the lack of dopamine by affecting the brain’s reward system can cause  
depressive-like behavior and reduce social activities.(97, 98) Moreover, LPS reduces 
noradrenaline in the CNS through proinflammatory cytokine mediators. The nucle-
us secreting noradrenaline in the brain is the locus coeruleus. This nucleus sends 
many inputs to the hippocampus.(99, 100) 

The hippocampus plays an important role in the HPA axis response to stress 
and behavior. As a result, LPS reduces dopamine and noradrenaline through IL-1, 
leukemia inhibitory factor (LIF),(26) IL-6, and TNF-α. Subsequently, by affecting the 
reward system and the HPA axis, it causes fear, stress, mood changes, the reduction 
of social behaviors, and the appearance of animal sickness behaviors.(31, 101, 102) 

LPS activates the indoleamine 2,3-deoxygenase (IDO) enzyme through TNF-α to 
affect social behaviors, especially depressive-like behavior. This enzyme transforms 
tryptophan into kynurenine. So, the kynurenine level in the circulation and brain 
increased.(9)

 Kynurenine and IDO enzymes are the mediators of cognitive disorders, in-
cluding depressive-like behavior, mood, and behavior.(103, 104) Peripheral(103) and 
central(105) injections of LPS induce depressive-like behavior by activating proin-
flammatory cytokine, and IDO receptors.
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Central lipopolysaccharide effect on memory
LPS induces oxidative stress(106) through activation of microglia, synthesis of proin-
flammatory cytokines, and release of ROS.(25, 107) Furthermore, oxidative stress in-
duces the production of the 1 ƙβ inhibitory subunit of the NF- ƙβ transcription factor 
which correlates to the neuro-inflammatory cluster in the pathogenic mechanisms 
of cognitive and behavioral malformations and neuronal damage. Ultimately, these 
factors decline the endogenous antioxidant system.(108) As well, the level of neu-
rotrophic factors in the brain is reduced, especially in the hippocampus. Damage to 
the hippocampus induces numerous psychological and neurological disorders such 
as reduced long-term potentiation (LTP), and behavioral patterns.(1, 109−111) This 
effect on LTP is mediated by IL-1β and TNF-α.(112) Furthermore, LPS causes major 
neurological deficits in this way. 

LPS causes dysfunction of mitochondria, increases the amount and function 
of AchE, induces oxidative stress,(1) and reduces NO levels in the brain.(113) Ox-
idative stress induced by ROS causes mitochondrial dysfunction. This disorder in 
mitochondrial function is due to damage to mitochondrial membrane lipids via a 
change in the mitochondrial membrane potential.(114) The cholinergic system in 
the brain is essential in the process of memory formation. In inflammation induced 
by LPS, by increasing the activity of the AchE enzyme, neurodegeneration occurs in 
the cholinergic system, and by causing a decrease in the level of Ach in the hippo-
campus, it causes memory formation disorders.(85, 115) NO contributes to learning 
by facilitating LTP. In LPS-induced inflammation in the brain, the activity of the NOS 
enzyme is reduced, as a result, reducing the level of NO in the hippocampus, caus-
es impairment in learning.(85, 113)

Central lipopolysaccharide effects on behavior 
Inflammation diseases in animals affect different aspects of behavior. This change 
in different aspects of behavior is induced by immune-stimulating substances such 
as LPS. The main mediators of these responses are proinflammatory cytokines 
including IL-1β, IL-6, TNF-α (mammals),(116) and TL-1A (birds).(117) These be-
havioral changes can include depressive-like behavior,(9) fatigue,(10) anxiety-like 
behavior,(11) anhedonia,(12) lethargy,(13) and anorexia.(57) It is indicated that LPS in 
laying chickens caused behavioral changes including prolonged sitting and inactiv-
ity, hyperthermia, reduced duration of standing, feeding, drinking, movement, and 
preening.(41, 72) Animals that receive LPS show animal sickness behaviors in lone-
liness. These animals do not show any animal sickness behaviors in their colonies 
despite receiving LPS, and IL-6 increased. Animals living in social conditions do not 
exhibit sickness behaviors in order to maintain their survival.(4)

Fatigue
Infections are associated with numerous systemic symptoms, including fatigue and 
pseudo-fatigue behaviors.(10) Fatigue is divided into four types: physical fatigue, 
mental fatigue, environmental fatigue, and immunological fatigue. Immune-in-
duced fatigue is related to the CNS and endocrine system. LPS is usually used 
to induce this type of fatigue.(118−120) These behaviors are associated with the 
disruption of the CNS. 
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Fatigue and pseudo-fatigue behaviors have symptoms such as headaches, 
muscle weakness, weakness and reflex slowness, impaired motion coordination, 
reduced cognitive abilities, and decreased motivation and rewarding behaviors. 
Most of these behaviors appear after a rest period.(121) The main and precise 
causes of fatigue are not clear. Researchers suspect that prolonged activation of 
the immune system during disease and inflammation may be one of the causes 
of fatigue.(122) In the activation of the immune system during the inflammation, 
the concentration of proinflammatory cytokines, including IL-2,(123) IL-1β, and 
TNF-α is high. Also during this period, body temperature decreases.(124) These 
proinflammatory cytokines can induce fatigue by entering the brain, disrupting 
the BBB, and damaging serotonergic neurons, the basal ganglia, and the HPA  
axis.(125−127)

Anhedonia
Anhedonia is a characteristic of various neurological diseases, including major  
depressive disorder that affects humans.(12) Anhedonia means loss of interest 
and motivation to perform pleasurable activities and behaviors related to the re-
ward system.(128,  129) In patients with anhedonia, motivational behaviors such 
as appetite and consumption behavior including food intake are affected and  
disrupted.(130) In animal models, reduced sensitivity to reward, and inability to en-
joy pleasurable experiences are considered anhedonia.(131)

Inflammation is the immune system’s response to harmful stimuli. Inflamma-
tory responses in the body aim to preserve tissue and ensure the survival of the 
organism.(132) LPS-induced systemic inflammation destroys the BBB and causes 
neuroinflammation.(133) In neuroinflammation, microglia, glial, and astrocytes are 
activated, and exert their inflammatory and anti-inflammatory effects(134,  135) Mi-
croglia (M) cells are of two types: M1 and M2. M1 promotes inflammation by 
producing proinflammatory cytokines. M2 is anti-inflammatory.(136) Activation of 
proinflammatory cytokines released by microglia, and astrocytes causes cognitive 
impairment and depressive-like behavior symptoms including anhedonia.(137) 

The increase of proinflammatory cytokines in neuroinflammation causes chang-
es in the secretion and release of brain neurotransmitters including dopamine in 
the basal ganglia.(12, 138) Decreased dopamine secretion causes decreased motiva-
tion,(139) depressive-like behavior, and mood changes including anhedonia.(140) In 
addition to dopamine, which induces anhedonia in neuroinflammation, endocanna-
binoids also play a role in this relationship. In neuroinflammation, the brain level of en-
docannabinoid decreases and may induce anhedonia.(141) In animals, the increase 
of inflammatory mediators is related to the occurrence of anhedonia behaviors.(142)

IDO increases in response to inflammation and plays a critical role in sickness 
behaviors such as depressive-like behavior and anhedonia.(45,  103) IDO enzyme 
in the CNS metabolizes tryptophan to L-kynurenine. As the level of tryptophan 
decreased, the level of serotonin reduced.(137) This reduction leads to the synthe-
sis and release of neuroregulators including 3-hydroxykynurenine, and quinolinic  
acid.(143) Increasing the level of these metabolites by affecting N-methyl-D-aspar-
tate receptors causes nerve damage and behavioral changes.(144) Proinflammatory 
cytokines in LPS-induced inflammation cause anhedonia by increasing serotonin 
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transporter enzyme activity and inhibiting serotonin reuptake.(145) Systemic admin-
istration of LPS in rats(131) and mice induces anhedonia.(146, 147)

Anxiety-like behavior 
Anxiety-like behavior is a vague feeling of fear and worries with an unknown  
origin which is considered the individual’s response to risks. anxiety-like behavior 
symptoms include uncertainty, helplessness, and physiological arousal; which is 
sometimes accompanied by increased heart rate and blood pressure.(44) LPS binds 
to TLR4 in glial cells and releases proinflammatory cytokines.(148,  149) So, LPS via 
proinflammatory cytokines increases the level of tau proteins and amyloid accumu-
lation. Proinflammatory cytokines subsequently impact the BDNF signaling pathway 
by reducing the phosphorylation of the BDNF receptor (TrkB) and increasing tau 
protein levels. As a result, BDNF levels decrease in the hippocampus and cerebral 
cortex. As a result, it causes anxious behavior.(44) Oxidative stress plays an import-
ant role in the induction and pathophysiology of anxiety-like behavior.(150) LPS 
induces oxidative stress in the brain. Oxidative stress in the brain causes increased 
production of ROS and induces neuroinflammation in the brain.(150) So, induced 
behavioral abnormalities including anxiety-like behavior.(11)

Lethargy
Lethargy is a disorder characterized by drowsiness, an unusual lack of energy and 
mental alertness. It can be caused by a variety of things, including an inflammato-
ry disease, an injury, or medications. Orexin neurons in the lateral hypothalamus 
area are associated with motivational and reward-based behaviors. These neurons 
are involved in LPS-induced lethargy. Following inflammation, the activity of orexin 
neurons is suppressed via GABAergic neurons in the lateral hypothalamus area  
(LHA).(13) Following inflammation, this activity decreases. Decreased activity of 
these neurons is associated with lethargy.(151,  152) 

Neurons sensitive to inflammation in the brain receive messages related to 
inflammation from the dorsal complex of the vagus nerve and IL-1. These neurons 
then integrate the received messages and issue the final response to inhibit the 
orexin neurons. These neurons might therefore also be involved in lethargy.(77) 
Melanocortin regulates LHA activity through the melancocortin 4 receptor. GAB-
Aergic neurons in the LHA inhibit the activation of orexin neurons.(77) As well, LPS 
exerts its central effects in the brain through NO. LPS via NO induces behavioral 
responses such as hypothermia, inactivity, and lethargy.(153)
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Conclusion
Inflammation is the body’s physiological response to harmful stimuli. This response 
is caused by many pathogenic compounds that enter the body. LPS is one of the 
most common pathogens inducing systemic and central inflammation. Inflamma-
tion through the effect on hematopoietic blood cells causes the synthesis and 
release of proinflammatory cytokines from the liver Kupffer cells. These cytokines 
include IL-1β, IL-6, IL-10, IL-8, and TNF-α. Then, these proinflammatory cytokines 
induce neuroinflammation by passing through the BBB and affecting the PVN via 
LTs, and IL receptors. Neuroinflammation causes animal sickness behavior such 
as fever, decreased food intake, and body weight, increased circulating WBC, in-
creased apoptosis, memory loss, cognitive disorders, depressive-like behavior,  
lethargy, fatigue, anhedonia, and anxiety-like behavior (Graphical abstract). Know-
ing the sequence of behaviors will lead to better identification of inflammation and 
help to treat it. 

Graphical abstract. Effect of LPS on body physiological responses. CD14: Cluster of differentiation 14. NF-ƙβ: Nuclear 
factor-ƙβ. TNF-α: Tumor necrosis factor-α. O2: Superoxide. IL-R: Interleukin-Receptor. LT-R: Leukotriene-Receptor. ARC: 
Arcuate Nucleus. PVH: Paraventricular Nucleus.↑ : Receptor Stimulating (Own authorship). 
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