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Abstract
The white spot syndrome virus (WSSV) is currently the main threat to the 
shrimp industry due to significant economic losses associated with shrimp 
mortality. The first hours of host-parasite interactions are crucial for the fate 
of WSSV infection, which becomes irreversible after 72 h. During this critical 
period, there is still a limited understanding of the interaction between the 
gut microbiota and the host response. In this study, we evaluated the effect 
of WSSV on the Pacific white shrimp Litopenaeus vannamaei (Boone, 1931) 
at the gut microbiome level and the expression of four genes in hemocytes 
and hepatopancreas associated with aerobic (ATP synthase) and anaero-
bic (LDH) metabolism, cell pathogen internalization (AP-2), and immune 
response (α2M). The genes LDH and α2M were overexpressed in hemo-
cytes and hepatopancreas, while the AP-2 gene was overexpressed only in 
hemocytes. In infected shrimps, we observed a positive correlation between 
the increase in viral load (VL), the upregulation of the genes LDH and AP-2, 
and the augmentation of the relative abundance of Ideonella, Actinobacter, 
Flavobacterium, Caldalkalibacillus, Gemmobacter, Pirellula, Metilophylus, 
Hydrogenophaga, Pseudomona, Methylophaga, Candidatus Bacilloplasma, 
and Novosphingobium. Whereas the gut microbiome in uninfected shrimps 
was represented by Motilimonas, Tamlana, Shimia, Spongiimonas, Pseudo-
alteromonas, Aeromones, and Shewanella. Results from this study contrib-
ute to understanding the intricate interplay between WSSV infection, the host 
response, and gut microbiota in aquaculture settings.

Keywords: Litopenaeus vannamei; Immune system; WSSV-Ie gene; Early genes; 
Microbiome.
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Study contribution
WSSV infection is the main cause of death in shrimps, or which there is no cure or 
treatment; and there is evidence that the first 48 h are crucial for the fate of the 
virus within its host. Intestinal microorganisms play an important role in maintaining 
host health, but their functions, along with changes in the gene expression profile 
during early WSSV infections, are unknown. We performed a comparative evalua-
tion between experimentally infected and uninfected shrimps with WSSV in terms 
of viral load quantification, changes in the gut microbiota, and their correlations 
with the expression profile of genes associated with the anaerobic energetic me-
tabolism, immune response, and cell-pathogen internalization. This study provided 
the first evidence that changes in gut microbiome are closely associated with the 
severity of WSSV infection and the expression profile of key genes that may help to 
monitor viral pathogenesis during the early stages of WSSV infection.

Introduction
Shrimp farming is one of the most economically relevant food industries worldwide, 
but it frequently suffers significant economic losses due to outbreaks associated 
with the white spot syndrome virus (WSSV), which has affected the global shrimp 
industry since its discovery in the early 1990s.(1) According to estimates, the cu-
mulative economic impact of this virus is valued at 8 to 15 billion USD, and it is 
expected to increase.(2) WSSV is difficult to eradicate, in part because it has been 
reported in more than 100 host species from fresh, brackish, and marine waters.(3) 
Additionally, WSSV infection becomes irreversible at 72 hours post-infection, caus-
ing mortality within 3 to 10 days. Thus, evaluating the prognosis of the infection 
during early stages is crucial, either for diagnosis or for linking the host response, 
through gene expression analyses, with changes in the gut microbiome, in search 
of additional strategies to control WSSV.

Infection begins when virions bind to the surface of a target cell.(4) During 
this interaction, the first few hours of infection are crucial for both the virus and 
its host. After penetrating the cell membrane of target cells, WSSV particles are 
located within early endosomes.(5) Clathrin-mediated endocytosis occurs at spe-
cialized sites where viruses bind to specific receptors.(6) The coated pits then in-
vaginate and form intracellular clathrin-coated vesicles. Clathrin assembly requires 
the heterotetrameric protein complex AP-2, which contains four subunits: α, β2, μ2,  
and σ2.(7−9)

Then, WSSV particles escape from the endosome to the cytosol through mem-
brane fusion or membrane disruption mechanisms.(9) They then reach the nucle-
us and penetrate the nuclear envelope within the first twelve hours postinfection 
(hpi).(10) Inside the nucleus, the virus begins to express its own genes to initiate 
its replication using the host’s replication machinery. In these circumstances, “early 
genes”, which encode transcription factors and other regulators that enable the tran-
scription of viral genes, are activated. Subsequently, “late genes” are expressed after 
the initiation of viral DNA synthesis and the formation of structural proteins.(10, 11)

Additionally, during WSSV infection, the expression of a wide range of genes 
in the host is altered, especially those related to the immune response and cellular 
processes.(12, 13) The cellular processes associated with immune defense include 
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energy production, clathrin-mediated transport, protein transport, and protein syn-
thesis.(13−15) For instance, it has been reported that the virus manipulates the 
host’s energy metabolism to initiate viral colonization and replication.(13) Two ex-
amples of enzymes involved in energy metabolism are L-lactate dehydrogenase 
(LDH) and ATP synthase. LDH produces lactate from pyruvate in the last step of 
glycolysis, regulating the rapid production of large amounts of energy.(16, 17) In 
invertebrates, LDH expression is regulated under hypoxia, viral infections, and ex-
posure to several xenobiotics.(16, 18) Another example is the ATP synthase, which 
plays a central role in ATP synthesis. ATP synthase has been found on the surface 
of hemocytes in the crayfish Pacifastacus leniusculus and L. vannamei.(19, 20) The 
enzyme alpha-2-macroglobulin (α2M) is one of the most abundant and multifunc-
tional proteins in shrimp and is a broad-spectrum inhibitor of serine proteinase.(21)  
This enzyme is involved in several immune responses in invertebrates, such as 
phagocytosis, hemolymph coagulation, and prophenoloxidase activation.(22, 23)

The gut microbiota is crucial for the immune development and maintenance 
of host metabolism.(24, 25) The gut microbiome is a complex microbial commu-
nity comprising approximately 100 trillion microorganisms in the digestive tract, 
influencing both host metabolism and overall health.(26) Gut microbes have the 
potential to serve as biomarker for identifying specific signature during pathogen-
ic invasion.(27) For example, during infections with fungi, white stool syndrome, 
and Acute Hepatopancreatic Necrosis Syndrome, significant changes occur in the 
composition and structure of the gut microbiota of infected shrimps compared to 
healthy individuals.(28−30) Additionally, in L. vannamei, WSSV infection leads to 
marked dysbiosis at 72 hpi, when the disease becomes irreversible.(31) However, 
evaluating disease progression during the early stages of WSSV infection –focusing 
on changes in the gut microbiome and the host response through alterations in the 
gene expression profile– would provide critical insights into the interaction between 
these factors and their impact on shrimp health. The primary aim of this study was 
to conduct a comparative evaluation between experimentally infected and unin-
fected shrimps with WSSV, analyzing viral load quantification and gut microbiota 
alterations during the early stages of infection (6, 12, 24, and 48 h) and their cor-
relations with the expression profile of genes associated with energy metabolism 
(ATP synthase), anaerobic energy metabolism (LDH), innate immune response 
(α2M), and cell pathogen internalization (AP-2).

Materials and methods
Ethical statement
All live animal protocols described below were approved by the Comité Institucio-
nal de Cuidado y Uso de Animales of Centro de Investigación y de Estudios Avan-
zados (Cinvestav) (CICUAL-Cinvestav) under reference number: 0419-051. The 
procedures followed the guidelines established in the Mexican Official Standard 
NOM-062-ZOO-1999.
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Viral inoculum preparation
The viral inoculum was prepared from gills, muscles, and pleopods of a WSSV-infect-
ed shrimp.(15, 32) Briefly, shrimp tissues were macerated and homogenized in 10 mL 
of sterile saline solution (150 mM NaCl), and centrifuged at 7 500 g/30 min/4 °C. 
The supernatant was then centrifuged again at 12 000 g/30 min/4 °C. After centrif-
ugation, the supernatant was filtered through a 0.22 μm ultrafiltration membrane 
(Corning®), and the flow-through was concentrated using Amicon Ultra-15 Centrif-
ugal Filter Units (Merck-Millipore®) with 100 kDa cut-off at 1 000 g/30 min/4 °C. 
The resulting material was used as the inoculum and stored at -80 °C until further 
use. The viral load was quantified by qPCR. The infectivity of the inoculum was 
verified in five healthy juvenile shrimps, which were injected intramuscularly with 
100 μL of inoculum. Shrimps were monitored daily for the appearance of clinical 
signs of WSSV infection, such as erratic swimming, reduced food consumption, and 
reddish body coloration. After sacrifice, qPCR was performed to assess the viral 
load.

Exposure bioassay
For the exposure experiment, 80 juveniles L. vannamei were obtained from the 
aquaculture facilities of the Universidad Nacional Autónoma de México, Unidad 
Multidisciplinaria de Docencia e Investigación (UNAM-UMDI), Sisal. The organisms 
were transported to Cinvestav-Unidad Mérida and maintained for three weeks in 
filtered, aerated seawater [35 Practical Salinity Units (PSU)] in recirculated contain-
ers. Shrimp were fed twice daily with a commercial diet containing 35 % protein, at 
a feeding rate of 7 % of their biomass. The aquarium was cleaned daily to remove 
fecal matter and debris.

The organisms were acclimated for five days in 150 L tanks containing 35 PSU 
water at 26 ± 2 °C, pH 7.8 ± 0.3, with constant aeration. Then, 24 healthy juvenile 
shrimps (L. vannamei) (14.5 ± 2.5 g weight and 13.4 ± 0.6 cm lenght) were 
divided into control and experimental groups based on infection (6 hpi, 12 hpi, 
24 hpi, and 48 hpi). Only intermolt-stage animals were used for the experiments. 
The organisms were assigned to a control group (n = 36) and an experimental 
group (n = 36). Shrimps in the experimental group were injected intramuscularly 
between the third and fourth abdominal segments using a 1 mL insulin syringe, 
containing 100 μL (~2.16 × 106 viral copies) of the WSSV inoculum. The organ-
isms in the control group were injected with a sterile saline solution. Three individ-
uals from the control group and three from the experimental group were collected 
at 6 hpi, 12 hpi, 24 hpi and 48 hpi for subsequent analyses.

Sample collection
Hemolymph was extracted from the ventral hemolymphatic sinus using an insulin 
syringe preloaded with 750 μL of anticoagulant shrimp solution (SC-EDTA pH 7.2, 
900 mOsm/L) at a 3:1 ratio (anticoagulant-hemolymph).(33) The hemolymph-an-
ticoagulant mixture was centrifuged at 1 000 g/ 7 min. The supernatant was dis-
carded, and the pellet was resuspended with 500 μL of SC solution. It was then 
centrifuged again, and the resulting pellet (hemocytes) was immediately fixed with 
TRizol reagent (Thermo Scientific©) and stored at -80 °C until analysis.

https://veterinariamexico.fmvz.unam.mx/
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The shrimps body surface was washed with sterile water and 75 % ethanol 
before dissection. Gills and intestines were fixed in 96° ethanol for genomic DNA 
(gDNA) extraction. A ~2 g piece of hepatopancreas and hemocytes were pre-
served in RNA later (Invitrogen). All samples were immediately stored at −80 °C 
until further use.

Genomic DNA extraction
gDNA was extracted from gill and intestine samples using the Quick-DNA™ Mini-
prep Plus (Zymo Research™) kit. DNA concentration and purity were assessed 
spectrophotometrically. The quality and integrity of the total DNA were evaluat-
ed by gel electrophoresis (1 % agarose gel), and the DNA was stored at −20 °C  
until analysis.

Viral load quantification
The viral load of the inoculum and samples was determined by qPCR using a stan-
dard curve. The qPCR assays were performed using a Rotor-Gene Q (QIAGEN®) 
thermocycler and the QuantiNova SYBR Green PCR Master Mix (QIAGEN®).  
Each reaction consisted of 7.5 μL 2× QuantiNova SYBR Green (QIAGEN®), 2 μL 
of each dilution or 50 ng of gDNA template, 0.5 μL of each primer (5 μM) and 
4.5 μL of nuclease-free water. The reaction conditions were initial denaturation step 
of 95 °C/ 3 min, 30 cycles of 95 °C/ 30 s, 59 °C/ 30 s and 72 °C/ 30 s, with a 
final extension at 72 °C for 5 min. Amplification specificity was assessed by melting 
curve analysis. Additionally, a calibration curve was prepared with 1:10 dilutions of 
plasmid DNA for quantification.

The primers used in the qPCR were Ie-126Fw (TGAAACGGTGTGCTGTTAGC) 
and Ie-126Rv (AAGTTCCTCCATCGTCATCG) for the early infection gene [GenBank 
Accession number (AN) = GE616383.1] and VP28-140Fw (CTGCTGTGATTGCTG-
TATTT) and VP28-140Rv (CAGTGCCAGAGTAGGTGAC) (AN = AY422228.1), target-
ing the capsid protein gene, which is the reference gene recommended by World 
Organisation of Animal Health (WOAH) and used here as the positive control.(15)

Plasmid DNA was obtained from recombinants bacteria (Escherichia coli) pre-
served in glycerol and cloned with either the Ie1-126 gene or the Vp28-140 gene. 
These bacteria were reconstituted and cultured on LB solid medium supplement-
ed with ampicillin (selective medium). Plates were incubated overnight at 37 °C. 
From this microbial growth, an isolated colony was selected and inoculated in LB 
liquid medium supplemented with 10 μL of ampicillin and incubated at 37 °C with 
shaking for 14-16 h to ensure optimal microbial growth. The cultured bacteria were  
centrifuged at 14 000 rpm for a minute to pellet the biomass. The plasmids  
were purified using the GeneJET Plasmid Miniprep Kit (Thermo Fisher Scientific™). 
The presence and integrity of plasmid DNA were verified by 1 % agarose gel elec-
trophoresis. The qPCR data were processed using software Rotor-Gene version 6.1.

https://veterinariamexico.fmvz.unam.mx/
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RNA extraction and complementary DNA obtention
RNA was extracted from hemocytes and hepatopancreas using the Direct-zol RNA 
kit (Zymo Research©). RNA purity and integrity were assessed using a NanoDrop™ 
2 000c (Thermo Scientific©) and 1 % agarose gel electrophoresis. Then, all RNA 
samples were standardized to a final concentration of 100 ng/μL for complemen-
tary DNA (cDNA) synthesis by reverse transcription-quantitative polymerase chain 
reaction (RT-qPCR), using the High-Capacity cDNA Reverse Transcription Kit (Ther-
mo Fisher Scientific™). Primer calibration curves were generated using five serial 
dilutions with a 1:5 dilution factor.

Gene expression analyses by qPCR
Four genes related to energy metabolism and immune response were quantified: 

 ] L-lactate dehydrogenase isoform X2 (LDH), associated with anaerobic  
metabolism.(18)

 ] ATP synthase subunit mitochondrial (ATP), associated with aerobic metabolism 
and the energy production pathway.(20, 34−36)

 ] AP-2 complex subunit alpha (AP-2), associated with protein transport,  
clathrin-mediated endocytosis.(7−9, 37)

 ] Alpha-2-macroglobulin isoform X3 (α2M), involved in the immune response as 
a protease inhibitor.(21−23, 38)

The reference gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was 
selected as an internal control “housekeeping” gene (Table 1).(39)

Table 1. Primers used for the gene expression analyses in uninfected  
and WSSV-infected L. vannamei

Gene Primer 
name

Sequence
Forward (5’- 3’) Reverse (3’- 5’) Function Access number 

(GenBank)

Glycoaldehyde-
3-phosphate 

dehydrogenase

GAPDH F:CCATGGAATGTTCTCGGGCT
R:AAGTATGACAGCACACGG

Housekeeping GETZ01023697.1

L-lactate 
dehydrogenase 

isoform X2

LDH F: GACGAGCACCAGCTAACA
R: AAGCTGCGTGGAGATGAT

Response to hypoxia 
and physiological stress, 

anaerobic metabolism, rapid 
energy production.

GETD01035385.1

ATP synthase subunit 
mitochondrial

ATP F: GCAGGTGATGTCCCTTCAT
R: GACAATGCCAGAGCTCAA

Aerobic metabolism and 
energy generation.

GCVY01000156.1

AP-2 complex 
subunit alpha

AP-2 F:TCATCTGTGCCGTCTGAGTC
R:TCTTCCATCTTAGCGGTGCT

Protein transport, clathrin-
mediated endocytosis.

GETD01037536.1

Alpha-2-
macroglobulin 

isoform X3

α2M F: ACACATCCAGATGGTGAA
R: CAACCACATAAGCTGCAA

Protease inhibitor, regulator 
of the immune response of 

invertebrates.

GETZ01051103.1

https://veterinariamexico.fmvz.unam.mx/
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Gene expression quantification was performed by qPCR using a Rotor-Gene Q 
thermocycler (QIAGEN®), and the Máxima SYBR Green/ROX qPCR Master Mix/2X 
kit (Thermo Fisher Scientific™). Reactions were standardized to a final volume of 
10 μL containing: 

 ] 5 μL of Maxima SYBR Green 2X (QIAGEN®).
 ] 0.625 μL of diluted cDNA (prepared as 5 μL of cDNA + 20 μL of nuclease-free 

water).
 ] 0.21 μL of each primer (5 μM)
 ] 3.96 μL of nuclease-free water. 

The thermal cycling conditions for amplification included an initial denaturation at 
95 °C for 10 min, followed by 35 cycles of: 

 ] Denaturation at 95 °C for 10 s.
 ] Extension at 60 °C for 45 s. 

All data were processed using Rotor-Gene Q software version 2.1.0.9 (Windows 
platforms). To confirm the specificity of the amplification, a dissociation curve anal-
ysis of the generated products was performed. 

Amplification and sequencing of 16S rRNA gene
The V3-V4 hypervariable regions of the bacterial 16S rRNA gene were amplified 
from intestine samples by PCR, using the primer pair: 
 ] 16S rRNA Forward Primer:

 5’TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG 
 ] 16S rRNA Reverse Primer:

 5’GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC

These primers generated ∼550 bp amplicons.(40) DNA from nine organisms was 
pooled into groups of three and analyzed. The PCRs reactions were performed 
using a C1000 Touch™ Thermal Cycler (Bio-Rad Laboratories Inc., USA) in a 25 μL 
total reaction volume containing:

 ] 12.5 μL of 2× DreamTaq Green PCR Master Mix (Thermo Scientific),
 ] 2.5 μL of gDNA template,
 ] 0.1875 μL (125 nM) of each primer,
 ] 9.6 μL of nuclease-free water. 

The thermal cycling conditions were as follows:
 ] Initial denaturation at 95 °C for 3 min.
 ] 30 cycles of:

 \ Denaturation at 95 °C for 15 s
 \ Annealing at 53 °C for 30 s
 \ Extension at 72 °C for 60 s

 ] Final extension at 72 °C for 7 min. 

https://veterinariamexico.fmvz.unam.mx/
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Amplification specificity was confirmed by melting curve analysis. Additionally, a 
calibration curve was generated using 1:10 serial dilutions of plasmid DNA for 
quantification. The quality and integrity of the PCR products were evaluated using 
1 % agarose gel electrophoresis. PCR products were stored at -20 °C. 

Libraries were prepared following the 16S Metagenomic Sequencing Library 
Preparation protocol from Illumina©. The concentration of libraries was assessed by 
Qubit 2.0 Fluorometer (Thermo©, USA). Amplicons were purified using AMPure XP 
beads and indexed with Illumina sequencing adapters using the Nextera XT Index 
Kit. Indexed amplicons were further purified and quantified as previously described. 
The library quality was assessed using an Agilent Bioanalyzer 2100 system. Indexed 
amplicons were sequenced in a paired-end (2 × 300 bp) with a MiSeq Reagent Kit 
V3 (600 cycles), on the MiSeq platform (Illumina, San Diego, CA, USA). Sequenc-
ing was conducted at the Sequencing Unit and Polymorphims Detection, Inmegen, 
Mexico.

Data analysis
The quantification of gene expression was carried out in a relative manner.(41, 42) 
The gene expression profile (mRNA relative quantification), was analyzed using 
comparative quantification analysis according to the Pfaffl method, implemented 
in REST-2009 software v. 2.0.13. Relative expression values were obtained by 
comparing experimental groups with the control group, for both reference and 
target genes. The mathematical model used is based on real-time PCR efficien-
cies and the mean crossing point deviation between samples and the control 
group. The expression ratio results of the investigated transcripts were tested for 
significance using a randomization test (2000 permutations), with a type I error 
used was α = 0.05.(43) Samples were analyzed in triplicate and plotted using  
GraphPad Prism® v.8.0.1 (GraphPad Software, San Diego, California USA,  
www.graphpad.com).(43, 44) 

For the metagenomic analysis, paired-end reads (2 × 300 bp) were processed 
with the QIIME2 pipeline (https://qiime2.org).(45) The demultiplexed FASTQ files 
were processed with the DADA2 plugin.(46) Sequences were trimmed at position 
20 in the 5’ end and truncated at position 280 in the 3’ end for both forward and 
reverse reads. Reads were denoised, amplicon sequences variants (ASVs) were re-
solved, and chimeric sequences were removed using the “consensus” method. The 
taxonomy of representative ASV sequences was assigned using the QIIME plugin 
feature-classifier classify-consensus-vsearch (v2.9.0).(47) The SILVA database (ver-
sion 132) was used for classification. ASV representative sequences were aligned 
using the MAFFT algorithm. After positional conservation and gap filtering, phyloge-
netic tree was built using the FastTree algorithm. Mitochondrial and chloroplast ASVs 
were removed, and the feature table was rarefied to a sequencing depth of 9 999.

The featured table and tree were exported R (http://www.R-project.org/) and 
statistical analyses were performed using the phyloseq, ggplot2 and vegan package. 
A PERMANOVA test was conducted to determinate the β diversity. Additionally, a 
linear discriminant analysis (LDA) effect size (LEfSe)(48) was performed at the ASV 
level to identify microbial taxa with differential abundances among treatments, us-
ing a LDA cut-off > 2 and a Kruskal-Wallis alpha value 0.05.
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Using the database from the experimental and control groups at different time 
points, a non-Euclidean triangular dissimilarity matrix was calculated based on dif-
ferential percentages of bacterial abundance (Bray Curtis coefficient).(49) This ma-
trix was used in the principal coordinate analysis (PCoA). In this ordination analysis, 
a Euclidean representation of objects (rows) was generated, where relationships 
were measured using a dissimilarity metric. The PCoA analysis was performed using 
the cmdscale fuction with Cailliez correction from the vegan package (50), version 
6-4, in R (R Development Core Team, 2023). Finally, to evaluate the correlations 
of independent variables (LV, AP-2 and LDH) with change in the composition and 
structure of bacterial genera from control and experimental groups, we used the 
envfit function from the vegan library in R.(50) The envfit function gives computes 
the squared correlation coefficient, using 9 999 random permutations for statical 
testing.

Results
Viral load quantification
In the inoculum, ~40 000 viral copies/μL were detected (Supplementary Figure 2). 
Following Koch´s postulates, after 24~48 hpi, five shrimps infected with the inocu-
lum started to exhibit typical signs of the disease, such as: 

 ] Reduced feed consumption
 ] Lethargy and erratic swimming
 ] Cuticle loss
 ] Reddish body coloration(3)

Genomic DNA extraction and viral quantification in gills
The gDNA concentration ranged between 100~250 ng/μL, and gDNA purity was 
between 1.85–2, in all samples at different infection time points. The viral load of 
WSSV increased over time. Amplification specificity was confirmed by melting curve 
analysis. 

Using the Ie1-126 primers:

 ] ~10 viral copies were detected at 6 hpi
 ] ~300 viral copies were detected at 12 hpi
 ] ~700 viral copies were detected at 24 hpi
 ] ~330 000 viral copies/μL were detected at 48 hpi (Figure 1a). 

Using the Vp28-140 primers:

 ] No viral copies were detected at 6 hpi
 ] ~10 viral copies were detected at 12 hpi
 ] ~25 viral copies were detected at 24 hpi
 ] ~38 000 viral copies were detected at 48 hpi (Figure 1b)
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Gene expression analyses
The gene expression profile of LDH, AP-2, α2M, and ATP synthase exhibited distinct 
patterns throughout the infection time course. The LDH, AP-2, and α2M genes were 
upregulated, whereas the ATP synthase gene did not show any significant changes in 
any of the samples. Specifically, the LDH gene exhibited a high level of upregulation 
in hemocyte samples compared to hepatopancreatic samples from 12 to 48 hpi, 
with significant differences (P = 0.01812) compared to the control. The ATP syn-
thase gene showed no significant changes in any of the tested samples. The AP-2 
gene was upregulated in hemocytes at 48 hpi (P = 0.0023), while no upregulation 
was observed in the hepatopancreas. Finally, the α2M gene was upregulated in 
hemocytes at 24 hpi (P = 0.0236), and 48 hpi (P ≤ 0.05), while in the hepatopa-
ncreas it was upregulated only at 48 hpi with lower values but significantly different 
from the control (P = 0.0321) [Figure 2].

Figure 1. Time-course infection of WSSV in L. vannamei. At 6, 12, 24, and 48 hpi, concerning the negative control for (a) 
the early infected gene: Ie1-126 and (b) the Vp28-140 genes. hpi: hours postinfection.
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Amplification and sequencing of 16S rRNA gene
Genomic DNA was extracted from intestinal samples, and the V3-V4 hypervariable 
regions of the bacterial 16S rRNA gene were amplified. All PCR products had a con-
centration range between 100–200 ng/μL and a purity range between 1.9–1.99. 
The sequencing analysis of 16S rRNA amplicons yielded a total of 1 825 641 se-
quence reads from WSSV-infected shrimps gut samples. However, after filtering, 
only 743 992 high-quality reads were retained for taxonomic classification.

Analysis of the composition and structure of bacterial 
communities
The sequencing analysis identified 30 bacterial genera (521 ASVs) in the gut sam-
ples (Figure 3). The most abundant genera were Vibrio, Shewanella, Pseudomo-
nas, Aeromonas, and Flavobacterium (Figure 3). The intestines of infected shrimps 
were represented by individual variability associated with Vibrio parahaemolyticus, 
but at 48 hpi Pseudomonas stutzeri was observed. In the β diversity analysis, no 
significant differences were observed between the negative control (F = 1.1618, 
R2 = 0.297, P = 0.201) (Figure 4).

Figure 2. Relative gene expression values for LDH, ATP synthase, AP-2, and α2M genes in hemocytes and hepatopancreas, 
error bars represent standard deviations, identified with an asterisk (*) the samples with significant differences for the 
control and the lower dotted line marks the limit from which the fold change is considered significant and by which it can 
be determined whether the gene is or not overregulated or deregulated. The type I error used was α=0.05. LDH: L-lactate 
dehydrogenase isoform X2, ATP: ATP synthase subunit mitochondrial, AP-2: AP-2 complex subunit alpha, α2M: Alpha-2-
macroglobulin isoform X3). hpi: hours postinfection.
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Differential abundance analysis between healthy and WSSV-
infected shrimps 
Significative differences in the relative abundance by genera were observed be-
tween WSSV-infected shrimps and controls by LefSe analysis (Figure 5). A great 
abundance of Vogesella and Cloacibacterium were observed in WSSV-infected 
shrimps to non-infected, while Vibrio, Pseudomonas, Shimia, Pseudoalteromonas, 
Tenacibaculum, Colwellia, and Celeribacter genera were more abundant in the 
non-infected shrimps than in the WSSV-infected shrimps.

In principal coordinate analysis (PCoA) was applied the non-Euclidean triangu-
lar dissimilarity matrix, calculated using the percentage difference (Bray-Curtis) co-
efficient. The genus of each microorganism and the analyzed variables are shown in 

Figure 3. Abundance of genera diversity obtained by 16S rRNA amplicons sequencing analysis of the intestine samples 
of White Spot Syndrome Virus (WSSV)-infected shrimps. Shrimps were analyzed at 6, 12, 24, and 48 hpi (hours  
postinfection), to their negative control (NC).

Figure 4. Relative abundance of species diversity obtained by 16S rRNA amplicons sequencing analysis of intestine samples 
of WSSV-infected shrimps. hpi: hours postinfection.
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Table S1. Figure 6 illustrates changes in the composition and structure of the bacterial 
genera over different experimental time points. The greatest change (dissimilarity) 
occurs at 48 h, due to an increase in the abundance and diversity of bacteria. 
Therefore, the increase in dissimilarity at 48 h is positively correlated with the ex-
pression of the genes: 

 ] LDH (r2 = 0.6031, P = 0.0180)
 ] AP-2 (r2 = 0.6332, P = 0.0156) 
 ] Viral load [VL (r2 = 0.5189, P = 0.0398)]

At this time point, microbiome analyses, showed that the relative abundance in 
the control group was dominated by: Motilimonas (MTM), Tamlana (TAM), Shimia 
(SHI), Spongiimonas (SPG), Pseudoalteromonas (PAM), Aeromones (ARM), and 
Shewanella (SHW). In contrast, in WSSV infected shrimps, we observed a pos-
itive correlation between the rise in viral load (VL), and the upregulation of the 
LDH and AP-2 genes, along with and increased relative abundance of: Ideonella 
(IDN), Actinobacter (ATB), Flavobacterium (FVB), Caldalkalibacillus (CKB), Gem-
mobacter (GMB), Pirellula (PIR), Metilophylus (MTP), Hydrogenophaga (HGP), 
Pseudomona (PDM), Methylophaga (MTP), Candidatus Bacilloplasma (CBP), and 
Novosphingobium (NPG). The relative abundance of Mycoplasma (MYC) and Vib-
rio (VIB) was specifically associated with an increase in viral infection.

Figure 5. Linear discriminant analysis (LDA) effect size (LEfSe) showed significant differences in genera abundance observed 
between WSSV-infected shrimps and non-infected shrimps from negative controls.
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Discussion
In the WSSV-shrimp interaction, the first 48 h are essential for the virus to accom-
plish the transcription of its genetic material. During this process, the virus employ 
strategies to evade the immune system and enter the cell for subsequent replica-
tion.(51−53) The viral load detection of WSSV using the Ie1-126 primers increased 
from ~10 viral copies/μL at 6 hpi to ~330 000 viral copies/μL at 48 hpi, while 
the Vp28-140 primers detected from ~10 viral copies/μL at 12 hpi, to ~330 000 
viral copies/μL at 48 hpi. Ie1 genes function as active trans-regulation factors to 
initiate viral replication during WSSV infection.(15, 54, 55) In contrast, the envelope 
protein Vp28 plays a key role in the infection process.(56) Vp28 primers are current-
ly used as reference genes by the World Organisation for Animal Health to confirm 
an active infection.(57) However, the implementation of diagnostic tests using Ie1 
primers would also be useful for detecting early WSSV infections in aquaculture 
settings.(51)

In the gene expression analyses, the ATP synthase gene showed no significant 
changes. Our results align with similar studies where ATP synthesis activity after 
WSSV infection was inhibited.(20, 36) ATP is rapidly consumed due to the rapid 
replication of WSSV in host cells, interfering with other energy-dependent biological 

Figure 6. Principal coordinate analysis (PCoA). Ordination analysis shows that at 48 hours post-inoculation (hpi) a greater 
composition of bacteria is observed when compared to the other experimental times and controls. The vectors show a 
positive correlation of the expression of the genes L-lactate deshydrogenase isoform X2 (LDH) (r2 = 0.6031, P = 0.0180), 
AP-2 complex subunit alpha (AP-2) (r2 = 0.6332, P = 0.0156) and viral load [VL (r2 = 0.5189, P = 0.0398)], with the 
change in composition of bacterial genera (greater dissimilarity) at 48 hpi. The size of the yellow circle is proportional to 
the viral load.
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functions of the host.(34, 58) When the aerobic pathway is suppressed, the anaer-
obic alternative pathway for energy production is activated. In this study, a marked 
upregulation of LDH gene and α2M genes was observed in hemocytes compared 
to the hepatopancreas. Our results are consistent with other studies on hemocytes 
of WSSV-infected shrimp.(18, 59) During the infection process, WSSV interferes with 
glycolysis (the glucose degradation pathway).(59, 60) The mechanism by which 
WSSV infection impairs glycolysis may involve the alteration of LDH activity.(17, 18) 
LDH plays a crucial role in the rapid production of large amounts of energy and is 
upregulated mainly under hypoxic conditions or when there is an immediate ener-
gy demand.(17, 61)

Also, in invertebrates, α2M (α-2-macroglobulin) is associated with immune 
defense mechanisms.(62, 63) The overexpression of α2M in hemocytes and hepa-
topancreas observed here may be related to the increase in endogenous proteases 
in response to pathogens invasion.(63−67) It has also been described that α2M may 
facilitate the entry of phagocytosis-activating proteins into phagocytic cells, enhanc-
ing immunity in infected shrimps(68) or during stress associated with the effect of 
abiotic conditions.(69)

On the other hand, AP-2 gene was only upregulated in hemocytes. WSSV uses 
a well-characterized cellular endocytic mechanism to internalize in cells through a 
clathrin-mediated endocytosis, which has been proposed as the principal strategy 
of internalization in shrimp cells.(14) Clathrin assembly to form coated pits requires 
the heterotetrameric protein AP-2.(7, 8) Here, the upregulation of AP-2 in hemo-
cytes benefits entry into the cell via clathrin-dependent endocytosis. It has been 
reported that inhibition of the clathrin pathway could delay WSSV proliferation, as 
clathrin-mediated endocytosis is essential for WSSV infection.(14, 70) This is a topic 
that deserves further evaluations, as our findings suggest that studying this signaling 
pathway in WSSV-susceptible and WSSV-resistant hosts could help develop strate-
gies to block viral entry pathways.

In uninfected shrimps, the intestinal microbiota is mainly composed of the 
genera Vibrio, Aeromonas, and Shewanella,(71−74) which is consistent with our 
findings. The genus Vibrio is common in the digestive track of shrimp,(71, 72, 74−76) 

and its predominance in healthy shrimp suggests that these bacteria may act as 
opportunistic agents capable of causing disease when gut microbiota balance 
is disrupted.(31, 77) For this reason, the abundance of Vibrio species is routinely 
monitored to qualitatively estimate disease risk in shrimp farms.(78−80) The genus  
Aeromonas was also abundant and is considered an opportunistic pathogen in 
shrimp and fish.(78, 81, 82) Its presence in the intestines of infected shrimp has been 
associated to dysbiosis.(83 84) In contrast, the genus Shewanella is used as a probi-
otics to promote nutrition, diseases resistance, and other beneficial activities.(85, 86)

In infected shrimps, the relative abundance of the genera Vogesella and Cloac-
ibacterium increased. To date, there are no reports of the role of these microor-
ganisms in shrimp intestine, although these species have been reported in sewage 
and wastewater.(87) On the other hand, the genera Vibrio, Pseudomonas, Pseu-
doalteromonas, Shimia, Tenacibaculum, and Colwellia significantly decreased in 
infected organisms. This reduction may reflect a decrease in intestinal metabolism, 
affecting the overall health of the organism.(88, 90) P. stutzeri has been reported in 
denitrification processes, reducing nitrate to dinitrogen gas.(91) This Proteobacteri-
um demonstrates inhibitory effects against V. parahemolitycus and V. alginolyticus 
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in aquatic organisms.(88) In the intestine of Artemia, P. stutzeri has been described 
as a probiotic that protects against Vibrio sp.(89) In P. monodon, it enhances growth, 
survival, and immunity.(90) The decrease in the relative abundance or the loss of 
certain bacterial species destabilizes the bacterial community,(87, 92) leading to a 
significant reduction in the gut microbial diversity.(27, 29, 93) One possible explana-
tion for this pattern is that pathogen colonization outcompetes gut commensals, 
resulting in lower diversity.(94) According to this criterion, WSSV infection in shrimp 
leads to a more divergent intestinal bacterial community.(95)

The PCoA analysis revealed a positive correlation between the increase in viral 
load (VL), the overexpression of the LDH and AP-2 genes, and changes in the 
microbiome, providing evidence of the relationship between the microbiome-im-
mune response-energy axis in response to early WSSV infection.

Conclusions
This study represents the first approach to evaluating alterations in the immune 
and energetic status of WSSV-infected L. vannamei and the changes in the gut 
microbiota during the first 48 h. During this period, genes associated with the an-
aerobic metabolism, cell differentiation, cell pathogen internalization, and immune 
response were upregulated. Moreover, we observed changes in the relative abun-
dance of Vibrio, Shewanella, Pseudomonas, Aeromonas, and Flavobacterium. Fi-
nally, the role of P. stutzeri as a probiotic during early WSSV infections is a topic that 
deserves further investigation regarding its potential impact on host susceptibility 
and/or resistance to WSSV infection. 
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