Effects of soybean and canola meals as dietary protein sources on the production performance and meat quality of shrimp

Main Article Content

Rafael Escobar
María Salud Rubio Lozano
Juan Carlos Maldonado Flores
Gabriela Gaxiola Cortés
Enrique Jesús Delgado Suárez

Abstract

Vegetable dietary protein sources are cheaper alternatives to fishmeal in shrimp diets. This study assessed the impact of fermented and non-fermented soybean and canola meals on growth performance, in vivo and in vitro digestibility, digestive enzyme activities and meat quality of Litopenaeus vannamei. A total of 513 shrimps were randomly assigned to treatments (control and two experimental diets). Animals on the control diet (cd) were fed a commercial feed concentrate. For the other treatments, the fishmeal protein source was totally replaced by a mixture of soybean and canola meal (50:50), either unfermented (sc) or fermented (fsc). Results showed that fermentation significantly increased (P < 0.05) the hydrolysis degree (hd) of sc meals by 12 % compared to that of their unfermented counterparts. Also, it was found that canola meal had higher hd compared to soybean meal, both before and after fermentation. The use of sc diet decreased protein digestibility in shrimps (P < 0.05), although there was no significant variation in the activity of total proteases and chymotrypsin. Production performance traits of shrimps fed diets with fsc were comparable to those of shrimps on the control diet. The increase in shear force of shrimps fed fsc was accompanied by an increase in the water holding capacity (whc) by 8-9 % (P < 0.05). Sensory attributes were similar across diets. In summary, this study showed it is possible to fully replace fish meal with fsc in shrimp diets without impairing production performance traits, dietary protein digestibility, and shrimp meat quality.

Keywords:
Soybean Canola Fermentation Shrimps Yield Quality

Article Details

Author Biography

María Salud Rubio Lozano, Laboratorio de Ciencias de la Carne, Centro de Enseñanza Práctica e Investigación en Producción Animal, Facultad de Medicina Veterinaria y Zootecnia

  • Profesor Titular C, T.C. de la Facultad de Medicina Veterinaria y Zootecnia de la UNAM desde 1995.
  • SNI II desde 2012
  • PRIDE D desde 2012
  • Licenciada en Veterinaria con Especialidad en Tecnología de los Alimentos en la Facultad de Veterinaria de Córdoba, España.
  • Doctorado en Animal Science (Meat Science) Universidad de Texas A&M, EEUU.
  • Academia: Licenciatura (Inocuidad Calidad de Productos y Subproductos Pecuarios) y de Posgrado (Ciencia de la Carne) en FMVZ-UNAM. 
  • Premio: Medalla Comecarne al Altruismo a favor de la Industria Carnica Mexicana 2010, Consejo Mexicano de la Carne.
  • Investigación: Area de Ciencia de la Carne, especialmente en Calidad y Rendimiento de carne de especies de abasto, Inocuidad de productos de origen animal, Calidad de carne y bienestar animal y Sustentabilidad de la cadena carne mexicana.
  • 25 Tesis de Licenciatura y 50 Tesis de Maestría en el área de Calidad e Inocuidad de la Carne
  • Alrededor de 40 artículos publicados en revistas especializadas tanto nacionales como internacionales, 80 artículos in extenso y 78 resúmenes en congresos. 
  • 120 conferencias nacionales e internacionales (México, USA, Colombia, Brasil, Cuba y España).
  • Dirigido unos 25 proyectos nacionales e internacionales financiados por Conacyt, Europa, Pfizer, USMEF, Intervet, otras industrias nacionales e internacionales. 

References

Msangi S, Kobayashi M, Batka M, Anderson JL. Prospects for fisheries and aqua- culture. World bank. 2015(83177). doi: 83177-GLB.

FAO. Inocuidad y calidad de los alimentos. Organización de las Naciones Unidas para la Alimentación y la Agricultura. 2020. http://www.fao.org/food-safety/es/

Cho JH, Kim IH. Fish meal - nutritive value. Journal of Animal Physiology and Ani- mal Nutrition. 2011;95(6):685-692. doi: 10.1111/j.1439-0396.2010.01109.x.

Miles RD, Chapman FA. The benefits of fish meal in aquaculture diets. Gaines- ville (FL): University of Florida; 2010. pp. 82-104. http://edis.ifas.ufl.edu

Index M. Fishmeal-monthly price (Mexican peso per metric ton) –commodity prices– price charts, data, and news. IndexMundi. 2020.

Magaña Gallegos E. Determinación del valor nutricional del floc en el camarón blanco del Pacífico (Litopenaeus vannamei) y el camarón rojo del Caribe (Farfantepenaeus brasiliensis) [Tesis de maestría]. Sisal, Yucatán: Universi- dad Nacional Autónoma de México; 2014. https://ru.dgb.unam.mx/handle/ DGB_UNAM/TES01000719689

Laohabanjong R, Srichanun M, Kuprasert S, Tantikitti C, Supamattaya K. Fish meal quality evaluated by chemical analysis and feed microscopy techniques. Songklanakarin Journal of Science and Technology. 2005;27(Suppl.1):25-44.

Ezquerra M, Bringas L, Burgos a, Rouzaud O. Control de la composición química y atributos de calidad de camarones cultivados. Control. 2004(1):441-462.

Avila-Villa LA, Garcia-Sanchez G, Gollas-Galvan T, Hernandez-Lopez J, Lugo-San- chez ME, Martinez-Porchas M, et al. Textural changes of raw and cooked muscle of shrimp, Litopenaeus vannamei, infected with necrotizing hepatopancre- atitis bacterium (NHPB). Journal of Texture Studies. 2012;43(6):453-458. doi: 10.1111/j.1745-4603.2012.00355.x.

Van Nguyen N, Hoang L, Van Khanh T, Duy Hai P, Hung LT. Utilization of fer- mented soybean meal for fishmeal substitution in diets of Pacific white shrimp (Litopenaeus vannamei). Aquaculture Nutrition. 2018;24(3):1-9. doi: 10.1111/ anu.12648.

Chan-Vivas E, Edén MG, Maldonado C, Escalante K, Gaxiola G, Cuzon G. Does biofloc improve the energy distribution and final muscle quality of shrimp, Litope- naeus vannamei. Journal of the World Aquaculture Society. 2019;50(2):460-468. doi: 10.1111/jwas.12522.

Erickson MC, Bulgarelli MA, Resurreccion AVA, Vendetti RA, Gates KA. Sen- sory differentiation of shrimp using a trained descriptive analysis panel. LWT- Food Science and Technology. 2007;40(10):1774-1783. doi: 10.1016/j. lwt.2006.12.007.

Brauer JME, Leyva JAS, Alvarado LB, Sández OR. Effect of dietary protein on mus- cle collagen, collagenase and shear force of farmed white shrimp (Litopenaeus vannamei). European Food Research and Technology. 2003;217(4):277-280. doi: 10.1007/s00217-003-0739-7.

Maldonado Flores JC. Evaluación de concentrados proteicos vegetales en la nutrición de L. vannamei: aspectos de digestibilidad, fisiológicos, bioquímicos y calidad [Tesis de doctorado]. Mérida, Yucatán: Universidad Nacional Autónoma de México; 2011.

Xie JJ, Lemme A, He JY, Yin P, Figueiredo-Silva C, Liu YJ, et al. Fishmeal levels can be successfully reduced in white shrimp (Litopenaeus vannamei) if supple- mented with DL-methionine (DL-Met) or DL-methionyl-DL-methionine (Met- Met). Aquaculture Nutrition. 2018;24(3):1144-1152. doi: 10.1111/anu.12653.

Sharawy Z, Goda AMAS, Hassaan MS. Partial or total replacement of fish meal by solid state fermented soybean meal with Saccharomyces cerevisiae in diets for Indian prawn shrimp, Fenneropenaeus indicus, Postlarvae. Animal Feed Science and Technology. 2016;212:90-99. doi: 10.1016/j.anifeedsci.2015.12.009.

Hassaan MS, Soltan MA, Abdel-Moez AM. Nutritive value of soybean meal after solid state fermentation with Saccharomyces cerevisiae for Nile tilapia, Oreochromis niloticus. Animal Feed Science and Technology. 2015;201:89-98. doi: 10.1016/j.anifeedsci.2015.01.007.

Shiu YL, Wong SL, Guei WC, Shin YC, Liu CH. Increase in the plant protein ratio in the diet of white shrimp, Litopenaeus vannamei, using Bacillus sub- tilis E20-fermented soybean meal as a replacement. Aquaculture Research.2015;46(2):382-394. doi: 10.1111/are.12186.

Mukherjee R, Chakraborty R, Dutta A. Role of fermentation in improving nutri- tional quality of soybean meal: a review. Asian Australasian Journal of Animal Sciences. 2016;29(11):1523-1529. doi: 10.5713/ajas.15.0627.

Zhu J, Gao M, Zhang R, Sun Z, Wang C, Yang F, et al. Effects of soybean meal fermented by L. plantarum, B. subtilis and S. cerevisieae on growth, immune function and intestinal morphology in weaned piglets. Microbial Cell Factories.2017;16(1):1-10. doi: 10.1186/s12934-017-0809-3.

Yabaya A, Akinyanju JA, Jatau ED. Yeast enrichment of soybean cake. World Journal of Dairy and Food Science. 2009;4(2):141-144.

Raa J, Gildberg A. Fish silage: a review. Critical Reviews in Food Science and Nutrition. 1982;16(4):383-419. doi: 10.1080/10408398209527341.

Cousin M, Cuzon G, Guillaume J. Digestibility of starch in Penaeus vannam- ei: in vivo and in vitro study on eight samples of various origin. Aquaculture. 1996;140(4):361-372. doi: 10.1016/0044-8486(95)01201-X.

Adler-Nissen J. Enzymic hydrolysis of food protein. Barking, Essex: Elsevier Ap- plied Science Publishers Ltd.; 1986.

Nieto López MG, Cruz Suárez LE, Ricque Marie D, Ezquerra Brauer M. Técnica de digestibilidad in vitro de ingredientes y alimentos para camarón. Ciencia UANL. 2005;VIII(1):65-73.

Dimes LE, Haard NF. Estimation of protein digestibility-I. Development of an in vitro method for estimating protein digestibility in salmonids (Salmo gairdneri). Comparative Biochemistry and Physiology. Part A: Physiology. 1994;108(2-3):349-362. doi: 10.1016/0300-9629(94)90106-6.

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anals of Bio- chemistry. 1976;72:248-254. doi: 10.1016/0003-2697(76)90527-3.

Keulen JV, Young BA. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. 1977;44(2):282-287.

Suárez JA, Gaxiola G, Mendoza R, Cadavid S, Garcia G, Alanis G, et al. Substitu- tion of fish meal with plant protein sources and energy budget for white shrimp Litopenaeus vannamei. Aquaculture. 2009;289(1-2):118-123. doi: 10.1016/j. aquaculture.2009.01.001.

Jiang N, Tan NS, Ho B, Ding JL. Azocoll protease activity assay. Protocol Ex- change. 2007(October) 2016:4-6. doi: 10.1038/nprot.2007.484.

Geiger R, Fritz H. Trypsin. In: Bergmeyer HU, editor. Methods of enzymatic anal- ysis. Volumen V. Enzymes 3: peptidases, proteinases and their inhibitors. 3rd ed. Weinhein, Deerfield Beach, FL, and Basel (CH): Verlag Chemie; 1988. pp.199-224.

Rick W. Chymotrypsin. In: Bergmeyer HU, editor. Methods of enzymatic anal- ysis. 2nd ed. Cambridge, Massachusetts (US): Academic Press; 1974. pp.1006-1012.

Díaz Tenorio LM. Cambios post-mortem en el músculo de camarón patiblanco (Litopenaeus vannamei) y el efecto de procesos post-cosecha en su textura [Tesis de doctorado]. La Paz, Baja California Sur, México: Centro de Investiga- ciones Biológicas del Noroeste, SC; 2006.

Botta JR, Lauder JT, Jewer MA. Effect of methodology on total volatile basic ni- trogen (tvb–n) determination as an index of quality of fresh atlantic cod (Gadus morhua). Journal of Food Science. 1984;49(3):734-736. doi: 10.1111/j.1365-2621.1984.tb13197.x.

Nova Cacho JI. Búsqueda y caracterización de la estabilidad de una fitasa fún- gica producida por fermentación en medio sólido [Tesis de maestría]. Guada- lajara, Jalisco: Centro de Investigación y Asistencia en Tecnología del Estado de Jalisco, AC; 2014.

Amadou I, Kmara MT, Amza T, Foh MBK, Le GW. Physicochemical and nutritional analysis of fermented soybean protein meal by Lactobacillus plantarum LP6. Word Journal of Dairy and Food Sciences. 2010;5:114-118.

Cruz Suárez LE. Digestión en camarón y su relación con formulación y fabricación de alimentos balanceados. En: 1996: Memorias del tercer simposium interna- cional de nutrición acuícola. Avances en Nutrición Acuícola. 1996(Nov);207-232. https://nutricionacuicola.uanl.mx/index.php/acu/article/view/330

Wang Y, Liu M, Wang B, Jiang K, Wang M, Wang L. A global view of hepatopan- creas and intestinal reveals the potential influencing mechanism of aflatoxin B1 on nutrition and metabolism in Litopenaeus vannamei. Aquaculture Nutrition.2019;25(6):1354-1366. doi: 10.1111/anu.12956.

Jannathulla R, Dayal JS, Vasanthakumar D, Ambasankar K, Muralidhar M. Effect of fungal fermentation on apparent digestibility coefficient for dry matter, crude protein and amino acids of various plant protein sources in Penaeus vannamei. Aquaculture Nutrition. 2018(July 2017):1-12. doi: 10.1111/anu.12669.

Siccardi AJ, Lawrence AL, Gatlin DM, Fox JM, Castille FL, Perez-Velazquez M, et al. Requerimientos de energía y proteína digerible para crecimiento y manten- imiento de subadultos de Litopenaeus vannamei. 2006. In: Avances en Nu- trición Acuícola viii. Monterrey, Nuevo León: Universidad Autónoma de Nuevo León. (Dec 13), 2021. https://www.uanl.mx/utilerias/nutricion_acuicola/VIII/ archivos/16Siccardi2.pdf

Lemos D, Navarrete Del Toro A, Córdova-Murueta JH, Garcia-Carreño F. Testing feeds and feed ingredients for juvenile pink shrimp Farfantepenaeus paulensis: in vitro determination of protein digestibility and proteinase inhibition. Aquacul- ture. 2004;239(1-4):307-321. doi: 10.1016/j.aquaculture.2004.05.032.

Rocha JV, Silva JF, Barros C, Peixoto S, Soares R. Compensatory growth and digestive enzyme activity of Litopenaeus vannamei submitted to feeding re- striction in a biofloc system. Aquaculture Research. 2019;50(12):3653-3662. doi: 10.1111/are.14323.

Maytorena-Verdugo CI. Efecto de solventes orgánicos y temperatura en la activi- dad enzimática de las lipasas digestiva e intracelular de Penaeus vannamei [Te- sis de maestría]. La Paz, Baja California Sur: Centro de Investigaciones Biológicas del Noroeste, SC; 2016.

Ayala Borboa EG. Efecto de la inclusión de harina de langostilla (Pleuroncodes planipes) en el alimento sobre la expresión y actividad enzimática digestiva en el intestino del camarón blanco (Litopenaeus vannamei) [Tesis de maestría] La Paz, Baja California Sur: Centro de Investigaciones Biológicas del Noroeste, SC; 2014.

Rosas C, Cuzon G, Gaxiola G, Pascual C. El metabolismo de los carbohidratos de Litopenaeus setiferus, L. vannamei y L. stylirostris. In: Avances en Nutrición Acuícola v. Memorias del V Simposium Internacional de Nutrición Acuícola. Mérida: Universidad Autónoma de Nuevo León; 2000. pp. 340-359.

Javahery S, Noori A, Hoseinifar SH. Growth performance, immune response, and digestive enzyme activity in Pacific white shrimp, Penaeus vannamei fed di- etary microbial lysozyme. Fish and Shellfish Immunology. 2019;92(June):528-535. doi: 10.1016/j.fsi.2019.06.049.

Wujie X, Yu X, Haochang S, Xiaojuan H, Yunna X, Zhuojia L, et al. Effects of feeding frequency on growth, feed utilization, digestive enzyme activity and body composition of Litopenaeus vannamei in biofloc-based zero-exchange intensive systems. Aquaculture. 2020;74(5):782–786.

Peng YK, Chen S, Ji H, Liu S. Localization of trypsin-like protease in postmor- tem tissue of white shrimp (Litopenaeus vannamei) and its effect in mus- cle softening. Food Chemistry. 2019;290(March):277-285. doi: 10.1016/j. foodchem.2019.03.147.

Dang TT, Jessen F, Martens HJ, Gringer N, Olsen K, Boknaes N, et al. Proteomic and microscopic approaches in understanding mechanisms of shell-loosening of shrimp (Pandalus borealis) induced by high pressure and protease. Food Chemistry. 2019;289:729-738. doi: 10.1016/j.foodchem.2019.03.059.

Triki M. Aminas biógenas en productos cárnicos más saludables en base a su contenido lipídico [Tesis de doctorado]. Madrid, España: Universidad Com- plutense de Madrid; 2013.

Sang Hyun S, Seong-Jun C, Young-Ho H, Je-Hoon R, Ju Hui K, Hyun C, et al., in- ventors. Method for preparing a fermented soybean meal using bacillus strains. Korea Patent No. WO/2011/031020. 2011.

Gallardo J, López M, Pastoriza L, Gonzalez P. Determinación de bases volátiles en productos pesqueros. Información Técnica del Instituto de Investigaciones Pesqueras. 1979;65(1):3-65.

Chan Vivas YE, Maldonado Flores JC. Evaluación en aspectos de zootecnia, fisiológicos y textura del músculo del camarón blanco (Litopenaeus vanna- mei) cultivado en sistema bio-floc y sistema tradicional [Tesis de licenciatura]. Ensenada, Baja California (MX): Centro de Investigación Científica y de Edu- cación Superior de Ensenada; 2012.

Velu S, Cheong Yew C, Zaman MZ, Abu Bakar F. Inhibition of melanosis, micro- bial and quality changes of white shrimp (Penaues vannameii) via effect of key lime juice and vacuum packaging at 2 ±1 ºC. Journal of Aquatic Food Product Technology. 2019;28(4):427-437. doi: 10.1080/10498850.2019.1595800.

Yang SP, Xie J, Qian YF. Determination of spoilage microbiota of pacific white shrimp during ambient and cold storage using next-generation sequencing and culture-dependent method. Journal of Food Sciences. 2017;82(5):1178-1183. doi: 10.1111/1750-3841.13705.

Čižmek L, Komorsky-Lovrić Š. Electrochemistry as a screening method in determi- nation of carotenoids in crustacean samples used in everyday diet. Food Chem- istry. 2019(Mar 30);309: 125706. doi: 10.1016/j.foodchem.2019.125706.

Boonyaratpalin M, Thongrod S, Supamattaya K, Britton G, Schlipalius LE. Ef- fects of β-carotene source, Dunaliella salina, and astaxanthin on pigmenta- tion, growth, survival and health of Penaeus monodon. Aquaculture Research.2001;32:182-190.

Latscha T. The role of astaxanthin in shrimp pigmentation. Animal Nutrition andHealth. 1989:319-325.

Parisenti J, Beirão LH, Tramonte VLCG, Ourique F, da Silveira Brito CC, Morei- ra CC. Preference ranking of colour in raw and cooked shrimps. Interna- tional Journal of Food Science and Technology. 2011;46(12):2558-2561. doi: 10.1111/j.1365-2621.2011.02781.x.

Albarracín SL, Baldeón ME, Sangronis E, Petruschina AC, Reyes FGR. L-Glutama- to: un aminoácido clave para las funciones sensoriales y metabólicas. Archivos Latinoamericanos de Nutrición. 2016;66(2):101-112.