Changes in the bacterial diversity of the ruminal liquid fraction of dairy cows on a corn stover based diet Ruminal microbial population of cattle fed corn stover

Main Article Content

Claudia C Márquez-Mota, Dra.
Laura Piña-González
Mónica Sánchez-Tapia, Dra
Nimbe Torres, Dra
Armando Tovar, Dr
Juan J Loor, Dr
Abdulrahman Alharthi, Dr
Luis Corona, Dr.

Abstract

Corn stover is a low-quality forage rich in lignocellulosic material. However, it is also a palatable and low-cost feedstuff for cattle. In this study, we hypothesized that feeding exclusively a corn stover-based diet (CSD), compared with one based on corn silage-oat hay, increases the abundance of the bacterial families and genera involved in cellulose and hemicellulose metabolism. For that purpose, we collected filtered ruminal fluid from six dry Holstein cows during two periods: Period 1, cows consumed a control diet based on corn silage and oat hay (CD), and in the Period 2, cows were fed CSD for 45 days. Ruminal fluid was collected through esophageal tubing. Ruminal microorganisms were identified by sequencing the 16S rRNA gene using the Illumina MiSeq platform. Compared with CD, feeding CSD for 45 days increased bacterial families and genera associated with higher neutral detergent fiber content and esterase and hemicellulolytic activities, such as Rikenellaceae, Prevotella, and Pseudobutyrivibrio. These results indicate that the liquid fraction of ruminal digesta contains a large number of microorganisms that help degrade lignocellulosic complexes, especially when diets with low-quality forages such as CSD are fed.

Keywords:
microbiota corn stover fibrolytic bacteria metagenomics Cattle

Article Details

References

Halmemies-Beauchet-Filleau A, Rinne M, Lamminen M, Mapato C, Ampapon T, Wanapat M, et al. Review: Alternative and novel feeds for ruminants: nutritive value, product quality and environmental aspects. Animal. 2018;12(s2):s295-s309. doi: 10.1017/S1751731118002252.

Stierwalt MR, Blalock HM, Felix TL. Effects of the interaction of forage and supplement type on digestibility and ruminal fermentation in beef cattle. Journal of Animal Science. 2017;95(2):892-900. doi: 10.2527/jas.2016.1072.

Zeineldin M, Barakat R, Elolimy A, Salem AZM, Elghandour MMY, Monroy JC. Synergetic action between the rumen microbiota and bovine health. Microbial Pathogenesis. 2018;124:106-115. doi: 10.1016/j.micpath.2018.08.038.

Cammack KM, Austin KJ, Lamberson WR, Conant GC, Cunningham HC. Ruminnat Nutrition Symposium. Tiny but mighty: the role of the rumen microbes in livestock production. Journal of Animal Science. 2018;96(2):752-770. doi: 10.1093/jas/skx053.

Delgado B, Bach A, Guasch I, González C, Elcoso G, Pryce JE, et al. Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle. Scientific Reports. 2019;9. doi: 10.1038/s41598-018-36673-w.

Wang LJ, Zhang GN, Xu HJ, Xin HS, Zhang YG. Metagenomic analyses of microbial and carbohydrate-active enzymes in the rumen of holstein cows fed different forage-to-concentrate ratios. Frontiers in Microbiology. 2019;10. doi: 10.3389/fmicb.2019.00649.

Xie X, Yang CL, Guan LL, Wang JK, Xue MY, Liu JX. Persistence of cellulolytic bacteria fibrobacter and treponema after short-term corn stover-based dietary intervention reveals the potential to improve rumen fibrolytic function. Frontiers in Microbiology. 2018;9. doi: 10.3389/fmicb.2018.01363.

Kong YH, Teather R, Forster R. Composition, spatial distribution, and diversity of the bacterial communities in the rumen of cows fed different forages. FEMS Microbiology Ecology. 2010;74(3):612-622. doi: 10.1111/j.1574-6941.2010.00977.x.

Latham EA, Weldon KK, Wickersham TA, Coverdale JA, Pinchak WE. Responses in the rumen microbiome of Bos taurus and indicus steers fed a low-quality rice straw diet and supplemented protein. Journal of Animal Science. 2018;96(3):1032-1044. doi: 10.1093/jas/sky023.

Pandit RJ, Hinsu AT, Patel SH, Jakhesara SJ, Koringa PG, Bruno F, et al. Microbiota composition, gene pool and its expression in Gir cattle (Bos indicus) rumen under different forage diets using metagenomic and metatranscriptomic approaches. Systematic and Applied Microbiology. 2018;41(4):374-385. doi: 10.1016/j.syapm.2018.02.002.

Wilkinson T, Korir D, Ogugo M, Stewart RD, Watson M, Paxton E, et al. 1200 high-quality metagenome-assembled genomes from the rumen of African cattle and their relevance in the context of sub-optimal feeding. Genome Biology. 2020;21(1). doi: 10.1186/s13059-020-02144-7.

De Mulder T, Goossens K, Peiren N, Vandaele L, Haegeman A, De Tender C, et al. Exploring the methanogen and bacterial communities of rumen environments: solid adherent, fluid and epimural. FEMSMicrobiology Ecology. 2017;93(3). doi: 10.1093/femsec/fiw251.

Klopp RN, Oconitrillo MJ, Sackett A, Hill TM, Schlotterbeck RL, Lascano GJ. Technical note. A simple rumen collection device for calves: an adaptation of a manual rumen drenching system. Journal of Dairy Science. 2018;101(7):6155-6158. doi: 10.3168/jds.2017-14201.

AOAC. Official Methods of Analysis of AOAC International. 18th edition. Association of Official Analysis Chemists International; 2005.

Van Soest PJ, Robertson JB, Lewis BA. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science. 1991;74(10):3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2.

Zinn RA. Influence of flake density on the comparative feeding value of steam-flaked corn for feedlot cattle. Journal of Animal Science. 1990;68(3):767-775. doi: 10.2527/1990.683767x.

Vaidya JD, van den Bogert B, Edwards JE, Boekhorst J, van Gastelen S, Saccenti E, et al. The effect of DNA extraction methods on observed microbial communities from fibrous and liquid rumen fractions of dairy cows. Frontiers in Microbiology. 2018;9. doi: 10.3389/fmicb.2018.00092.

Wilson K. Preparation of genomic DNA from bacteria. Current Protocols in Molecular Biology. 2001; Chapter 2: Unit 2.4. doi: 10.1002/0471142727.mb0204s56.

Sánchez-Tapia M, Aguilar-López M, Pérez-Cruz C, Pichardo-Ontiveros E, Wang M, Donovan SM, et al. Nopal (Opuntia ficus indica) protects from metabolic endotoxemia by modifying gut microbiota in obese rats fed high fat/sucrose diet. Scientific Reports. 2017;7(1):4716. doi: 10.1038/s41598-017-05096-4.

The National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Dairy Cattle. 8th revised edition. Washington, DC: The National Academies Press; 2021.

Wang Y, McAllister TA. Rumen microbes, enzymes and feed digestion -A review. Asian-Australasian Journal of Animal Sciences. 2002;15(11):1659-1676. doi: 10.5713/ajas.2002.1659.

Li HY, Xu L, Liu WJ, Fang MQ, Wang N. Assessment of the nutritive value of whole corn stover and its morphological fractions. Asian-Australasian Journal of Animal Sciences. 2014;27(2):194-200. doi: 10.5713/ajas.2013.13446.

Deusch S, Camarinha-Silva A, Conrad J, Beifuss U, Rodehutscord M, Seifert J. A structural and functional elucidation of the rumen microbiome influenced by various diets and microenvironments. Frontiers in Microbiology. 2017;8. doi: 10.3389/fmicb.2017.01605.

Zhang YK, Zhang XX, Li FD, Li C, Li GZ, Zhang DY, et al. Characterization of the rumen microbiota and its relationship with residual feed intake in sheep. Animal. 2021;15(3). doi: 10.1016/j.animal.2020.100161.

Bi YL, Zeng SQ, Zhang R, Diao QY, Tu Y. Effects of dietary energy levels on rumen bacterial community composition in Holstein heifers under the same forage to concentrate ratio condition. BMC Microbiology. 2018;18. doi: 10.1186/s12866-018-1213-9.

Bach A, López-García A, González-Recio O, Elcoso G, Fàbregas F, Chaucheyras-Durand F, et al. Changes in the rumen and colon microbiota and effects of live yeast dietary supplementation during the transition from the dry period to lactation of dairy cows. Journal of Dairy Science. 2019;102(7):6180-6198. doi: 10.3168/jds.2018-16105.

Kabel MA, Yeoman CJ, Han YJ, Dodd D, Abbas CA, de Bont JAM, et al. Biochemical characterization and relative expression levels of multiple carbohydrate esterases of the xylanolytic rumen bacterium prevotella ruminicola 23 grown on an ester-enriched substrate. Applied and Environmental Microbiology. 2011;77(16):5671-5681. doi: 10.1128/Aem.05321-11.

Zhang J, Shi HT, Wang YJ, Li SL, Cao ZJ, Ji SK, et al. Effect of dietary forage to concentrate ratios on dynamic profile changes and interactions of ruminal microbiota and metabolites in Holstein heifers. Frontiers in Microbiology. 2017;8. doi: 10.3389/fmicb.2017.02206.

Sawanon S, Koike S, Kobayashi Y. Evidence for the possible involvement of Selenomonas ruminantium in rumen fiber digestion. FEMS Microbiology Letters. 2011;325(2):170-179. doi: 10.1111/j.1574-6968.2011.02427.x.

Artzi L, Bayer EA, Morais S. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nature Reviews Microbiology. 2017;15(2):83-95. doi: 10.1038/nrmicro.2016.164.

Aguilar-Marin SB, Betancur-Murillo CL, Isaza GA, Mesa H, Jovel J. Lower methane emissions were associated with higher abundance of ruminal Prevotella in a cohort of Colombian buffalos. BMC Microbiology. 2020;20(1). doi: 10.1186/s12866-020-02037-6.

Greening C, Geier R, Wang C, Woods LC, Morales SE, McDonald MJ, et al. Diverse hydrogen production and consumption pathways influence methane production in ruminants. Isme Journal. 2019;13(10):2617-2632. doi: 10.1038/s41396-019-0464-2.