Spirulina (Arthrospira maxima), protects from cyclophosphamide teratogenicity in mice

Main Article Content

Angelina Carolina Vega-Navarro
Sergio Esteban Moreno-Vázquez
Natalia Cecilia Hernández-Delgado
José Melesio Cristóbal-Luna
Yuliana García Martínez
Gabriela Gutiérrez-Salmeán
Germán Alberto Chamorro-Cevallos

Abstract

We evaluated whether Arthrospira maxima, known as spirulina (Sp) counteracts the teratogenic effects induced by cyclophosphamide (Cp) in mice. Ninety pregnant CD-1 mice were divided into 6 groups: control, Cp 20 mg/kg, Sp 400 mg/kg and three with Sp at 100, 200 and 400 mg/kg with Cp. Sp was administered intragastrically from day of gestation (DG) 6 to 16 and Cp, intraperitoneally to DG 10. Females did not differ in weight, except for DG 10. In gravid parameters, Cp and Sp alone or in association did not show significant effects, except for umbilical cord length, placental diameter, weight and size of fetuses. At DG 17 the females were sacrificed to obtain pregnancy parameters. In the fetuses, macroscopic malformations such as anasarca, exencephaly, hydrocephalus, open eye, cleft palate, absence and deformations of upper and lower extremities and tail were evaluated, in skeletal anomalies absences, deformations, supernumerary bones and a delay in mineralization were observed, antioxidant enzymes were determined in the livers, as well as markers of damage due to oxidative stress. Sp 400 along with Cp counteracted the malformations significantly. Sp protects against Cp teratogenicity in mice by decreasing reactive oxygen species and increasing concentrations of superoxide dismutase and glutathione peroxidase, although not catalase.

Keywords:
Cyclophosphamide Spirulina Arthrospira Antiteratogenesis Mouse

Article Details

References

Martínez N, Almaguer G, Vázquez-Alvarado P, Figueroa A, Zúñiga C, Hernández-Ceruelos A. Análisis fitoquímico de Jatropha dioica y determinación de su efecto antioxidante y quimioprotector sobre el potencial genotóxico de ciclofosfamida, daunorrubicina y metilmetanosulfonato evaluado mediante el ensayo cometa. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 2014;13(5):437-57. https://www.redalyc.org/articulo.oa?id=85632125002

Torki ARA, Azadbakht M. The protective effect of vanadium on cyclophosphamide-induced teratogenesis in mouse fetus. Al-Kufa University Journal for Biology [internet]. 2018. https://journal.uokufa.edu.iq/index.php/ajb/article/view/8027

Khaksary MM, Gholami MR, Najafzadeh VH, Zendedel A, Doostizadeh M. Protective effect of quercetin on skeletal and neural tube teratogenicity induced by cyclophosphamide in rat fetuses. Veterinary Research Forum. 2016;7(2):133-38.

Miller BM, Wells KK, Wells CB, Lam XT, Carney ME, Kepko DS, et al. Exposure to the dietary supplement N-acetyl-L-cysteine during pregnancy reduces cyclophosphamide teratogenesis in ICR mice. Journal of Clinical Nutrition and Food Science. 2018;1(1):035-39.

Logsdon LA, Herring BJ, Lockard JE, Miller BM, Kim H, Hood RD, Bailey MM. Exposure to green tea extract alters the incidence of specific cyclophosphamide-induced malformations. Birth Defects Research Part B Developmental and Reproductive Toxicology. 2012;95(3):231-7. doi: 10.1002/bdrb.21011.

Padmanabhan R. congenital malformations attributed to prenatal exposure to cyclophosphamide. Anticancer Agents in Medical Chemistry. 2017;17(9):1211-27. doi: 10.2174/1871520616666161206150421.

Deng R, Chow TJ. Hipolipidemic, antioxidant and antiinflammatory activities of microalgae spirulina. Cardiovascular Therapeutics. 2020;28(4):e33-e45. doi: 10.111/j.1755-5922.2010200x.

Ferrera-Hermosillo A, Torres-Durán PV, Juarez-Oropeza MA. Hepatoprotective effects of spirulina maxima in patients with-non-alcoholic fatty liver disease. Journal of Medical Case Reports. 4:103. doi: 10.186/1752-1947-4-103.

Gutiérrez-Rebolledo GA, Galar-Martínez M, García-Rodríguez RV, Chamorro-Cevallos GA, Hernández-Reyes AG, Martínez-Galero E. Antioxidant effect of spirulina (Arthrospira maxima) on chronic inflammation induced by Freund's Complete adjuvant in rats. Journal of Medicinal Food. 2015;18(8):865-871. doi: 10.1089/mf.2014.0117.

Lafarga T, Fernández-Sevilla JM, González-López C, Acién-Fernandez FG. spirulina for the food and functional food industries. Food Research International. 2020;137:109356. doi: 10.1016/j.foodres.2020.109356.

Muthusamy G, Thangasamy S, Raja M, Chinnappan S, Kandasamy S. Biosynthesis of silver nanoparticles from spirulina microalgae and its antimbacterial activity. Environmental Science and Pollution Research International. 2017;24(23):19459-19464. doi: 10.1007/s11356-017-9772-0.

Ferrazzano GF, Papa C, Pollio A, Ingenito A, Sangianantoni G, Cantile T. Cyanobacteria and microalgae as sources of functional foods to improve human general and oral health. Molecules. 2020;25(21):5164. doi: 10.3390/molecules25215164.

Finamore A, Palmery M, Bensehaila S, Peluso I. Antioxidant, immunomodulating, and microbial-modulating activities of the sustainable and ecofriendly spirulina. Oxid Med Cell Longev. 2017:3247528. doi: 10.1155/2017/3247528.

Mohan A, Misra N, Srivastav D, Umapathy D, Kumar S. Spirulina-the nature's wonder: a review. Scholars Journal of Applied Medical Sciences. 2014;2(4C):1334-39.

Selmi C, Leung PS, Fischer L, German B, Yang CY, Kenny TP, et al. The effects of spirulina on anemia and immune function in senior citizens. Cellular & Molecular Immunology. 2011;8(3):248-54. doi: 10.1038/cmi.2010.76.

Szulinska M, Gibas-Dorna M, Miller-Kasprzak E, Suliburska J, Miczke A, Walczak-Galezewska M, et al. spirulina maxima improves insulin sensitivity, lipid profile, and total antioxidant status in obese patients with well-treated hypertension: a randomized double-blind placebo-controlled study. European Review for Medical and Pharmacological Sciences. 2017;21:2473-81.

Hernández-Lepe MA, Wall-Medrano A, Juárez-Oropeza MA, Ramos-Jiménez A, Hernández-Torres RP. spirulina and its hypolipidemic and antioxidant effects in humans: a systemic review. Nutritción Hospitalaria. 2015;32(2):494-500.

Torres-Duran PV, Ferreira-Hermosillo A, Juarez-Oropeza MA. Antihyperlipemic and antihypertensive effects of spirulina maxima in an open sample of mexican population: a preliminary report. Lipids in Health and Disease. 2007;26,6:33. doi: 10.1186/1476-511X-6-33.

Moradi S, Ziaei R, Foshati S, Mohammadi H, Mostafa NS, Hossein RM. Effects of spirulina supplementation on obesity: a systematic review and meta-analysis of randomized clinical trials. Complementary Therapies in Medicine. 2019;47:102211. doi: 10.1016/j.ctim.2019.102211.

Peters PWJ. Double staining of fetal skeletons for cartilage and bone. In: Neubert D, Merker HJ, Kwasigroch TE, editors. Methods in Prenatal Toxicology. Georg Thieme, Stuttgart; 1977:153-154.

Menegola E, Broccia ML, Giavini E. Atlas of rat fetal skeleton double stained for bone and cartilage. Teratology. 2001;64(3):125-33. doi: 10.1002/tera.1055.

Aebi H. Catalase in vitro. Methods in Enzymology. 1984;105:121-6. doi: 10.1016/s0076-6879(84)05016-3.

Parvez S, Raisuddin S. Protein carbonyls: novel biomarkers of exposure to oxidative stress-inducing pesticides in freshwater fish Channa punctata (Bloch). Environmental Toxicology and Pharmacology. 2005;20(1):112-117.

Buege JA, Aust SD. Microsomal lipid peroxidation. Methods in Enzymology. 1978;52:302-10. doi: 10.1016/s0076-6879(78)52032-6.

Gutiérrez-Salmeán G, Fabila-Castillo L, Chamorro-Cevallos G. Nutritional and toxicological aspects of spirulina (Arthrospira). Nutrición Hospitalaria. 2015;1,32(1):34-40. doi: 10.3305/nh.2015.32.1.9001.

Martínez-Sámano J, Torres Montes-Montes de Oca A, Luqueño-Bucardo OI, Torres-Durán PV, Juárez-Oropeza MA. spirulina maxima decreases endothelial damage and oxidative stress indicators in patients with systemic arterial hypertension: results from exploratory controlled clinical trial. Marine Drugs. 2018;16(12)496. doi: 10.3390/md16120496.

Vázquez-Sánchez J, Ramón-Gallegos E, Mojica-Villegas A, Madrigal-Bujaidar E, Pérez-Pastén-Borja R, Chamorro-Cevallos G. spirulina maxima and its protein extract protect against hydroxyurea-teratogenic insult in mice. Food and Chemical Toxicology. 2009;47(11):2785-9. doi: 10.1016/j.fct.2009.08.013.

Escalona-Cardoso GN, Paniagua-Castro N, Pérez-Pastén R, Chamorro-Cevallos G. spirulina (Arthrospira) protects against valproic acid-induced neural tube defects in mice. Journal of Medicinal Food. 2012;15(12):1103-8. doi: 10.1089/jmf.2012.0057.

Salazar M, Chamorro GA, Salazar S, Steele CE. Effect of spirulina maxima consumption on reproduction and peri- and postnatal development in rats. Food and Chemical Toxicology. 1996;34(4):353-9. doi: 10.1016/0278 6915(96)00000 2.

Heo MG, Choung SY. Anti-obesity effects of spirulina maxima in high fat diet induced obese rats via the activation of AMPK pathway and SIRT1. Food & Function. 2018;19;9(9):4906-4915. doi: 10.1039/c8fo00986d.

Carpio G, Gil-Kodaka P, Villanueva ME. Perfil hepático de ácidos grasos de ratas gestantes-lactantes y vírgenes suplementadas con espirulina (Arthrospira platensis). Revista Chilena de Nutrición. 2021;48(2):147-56. doi: 10.4067/S0717-75182021000200147.

Rezaei Z, Mohammadi T, Khaksary MM, Najafzadeh VH, Mohamadian B. MESNA Protective effect against cyclophosphamide toxicity on histomorphometry of rat placenta. Iranian Veterinary Journal. 2017;13(1):52-60. doi: 10.22055/IVJ.2017.36103.1604.

Tobola-Wróbel K, Pietryga M, Dydowicz P, Napierala M, Brazert J, Florek E. Association of Oxidative Stress on Pregnancy. Oxidative medicine and cellular longevity. 2020;(ID 6398520):1-12. doi: 10.1155/2020/6398520.

Sultana Z, Maiti K, Aitken J, Morris J, Dedman L, Smith R. Oxidative stress, placental ageing-related pathologies and adverse pregnancy outcomes. American Journal of Reproductive Immunology. 2017;77(5):e12653. doi: 10.1111/aji.12653.

Khaksary MM, Bakhtiari E. The teratogenicity of cyclophosphamide on skeletal system and neural tube of fetal mice. World Applied Sciences Journal. 2012;16(6):831-34.

Leite VS, Oliveira RJ, Kanno TYN, Mantovani MS, Moreira EG, Salles MJS. Chlorophyllin in the intra-uterine development of mice exposed or not to cyclophosphamide. Acta Scientiarum. Health Sciences. 2013;35(2):201-10. https://www.redalyc.org/articulo.oa?id=307228854008

Rot-Nikcevic I, Downing KJ, Hall BK, Kablar B. Development of the mouse mandibles and clavicles in the absence of skeletal myogenesis. Histology and Histopathology. 2007;22(1):51-60. doi: 10.14670/HH-22.51.

Bacon W. Cyclophosphamide-induced temporomandibular synostosis. American Journal Orthodontics. 1983;83(6):507-12.

Suárez S, Cabrera S, Ramírez E, Janampa D. Marcadores de estrés oxidativo en placentas de gestantes añosas. Anales de la Facultad de Medicina, Lima. 2007;68(4):328-32.

Ufer C, Wang C. The roles of glutathione peroxidases during embryo development. Frontiers in Molecular Neuroscience. 2011;4:12. https://www.frontiersin.org/article/10.3389/fnmol.2011.00012

Ho YS, Xiong Y, Ma W, Spector A, Ho DS. Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. Journal Biological Chemistry. 2004;279,(31):32804-12. doi: 10.1074/jbc.M404800200.

De Haan JB, Tymms MJ, Cristiano F, Kola I. Expression of copper/zinc superoxide dismutase and glutathione peroxidase in organs of developing mouse embryos, fetuses, and neonates. Pediatric Research. 1994;35:188-95. doi: 10.1203/00006450-199402000-00013.

Jové M, Mota-Martorell N, Pradas I, Martín-Gari M, Ayala V, Pamplona R. The advanced lipoxidation end-product malondialdehyde-lysine in aging and longevity. Antioxidants (Basel). 2020;15;9(11):1132. doi: 10.3390/antiox9111132.

Cim N, Tolunay HE, Karaman E, Boza B, Bilici M, Çetin O, et al. Amniotic fluid oxidant–antioxidant status in foetal congenital nervous system anomalies. Journal International Medical Research. 2018;46(3):1146-52. doi: 10.1177/0300060517734443.