Review of the nutritional quality of wild sunflower and cassava bran for silage production in dairy cattle

Main Article Content

Gastón Adolfo Castaño-Jiménez
Wilson Andrés Barragán-Hernández
Liliana Mahecha-Ledesma
Joaquín Angulo-Arizala

Abstract

Wild sunflower (Tithonia diversifolia (Hemsl.) A. Gray) is a promising forage for dairy cattle because of its relatively high content of protein and non-fibrous carbohydrates. Furthermore, it has secondary metabolites that can modulate rumen fermentation toward more efficient metabolic pathways for the animal and are less harmful to the environment. Also, due to its phonological state nutritional value, it helps establish management strategies that benefit animal performance without affecting forage. On the other hand, cassava bran is a by-product of the extraction of cassava starch (Manihot esculenta Crantz) which can be used to feed dairy cattle because of its high starch concentra- tion. The ensiling process favors the use of wild sunflower because it enables its harvest according to its phenological age, maintains stable forage supply, and reduces production costs. Using additives such as sugar, molasses, and fermented juice from epiphytic flora can contribute to the lactic acid fer- mentation process and reduce nutrient loss during silage production. Using cassava bran when making wild sunflower silage contributes to the conserva- tion of forage because it reduces humidity and provides easily fermentable carbohydrates. Wild sunflower mixed silage and cassava bran with its starch contribution benefit the feeding of dairy cattle because of the protein and secondary metabolites content of wild sunflower., However this hypothesis must be challenged experimentally.

Keywords:
Forage quality Forage conservation Tropical forages Secondary metabolites Agro-industrial by-products Alternative animal feeding Tithonia diversifolia (Hemls.) A. Gray

Article Details

References

Tarekegn GM, Karlsson J, Kronqvist C, Berglund B, Holtenius K, Strandberg E. Genetic parameters of forage dry matter intake and milk produced from forage in Swedish Red and Holstein dairy cows. Journal of Dairy Science. 2021;104(4):4424–4440. doi: 10.3168/jds.2020–19224.

Dyck BL, Colazo MG, Ambrose DJ, Dyck MK, Doepel L. Starch source and content in postpartum dairy cow diets: effects on plasma metabolites and reproductive processes. Journal of Dairy Science. 2011;94(9):4636–4646. doi: 10.3168/jds.20104056.

Ruiz JF, Cerón F, Barahona R, Bolívar DM. Caracterización de los sistemas de producción bovina de leche según el nivel de intensificación y su relación con variables económicas y técnicas asociadas a la sustentabilidad. Livestock Research for Rural Development. 2019;31(3):1–21.

Gómez LM, Posada SL, Olivera M, Rosero R, Aguirre P. Análisis de rentabilidad de la producción de leche de acuerdo con la variación de la fuente de carbohidrato utilizada en el suplemento de vacas holstein. Revista de Medicina Veterinaria. 2017;34(Suplemento):9–22. doi: 10.19052/mv.4251.

Betancourt JA, Núñez LA, Castaño GA. Suministro de ensilaje de Tithonia diversifolia sólo o mezclado con afrecho de yuca en la dieta de pollos de engorde. Tropical and Subtropical Agroecosystems. 2017;20(2):203–213.

An LV, Lindberg JE. Ensiling of sweet potato leaves (Ipomoea batatas (L.) Lam) and the nutritive value of sweet potato leaf silage for growing pigs. Asian-Australasian Journal of Animal Sciences. 2004;17(4):497–503. doi: 10.5713/ajas.2004.497.

Karlsson J, Lindberg M, Åkerlind M, Holtenius K. Whole-lactation feed intake, milk yield, and energy balance of Holstein and Swedish Red dairy cows fed grass-clover silage and 2 levels of byproduct-based concentrate. Journal of Dairy Science. 2020;103(10):8922–8937. doi: 10.3168/jds.2020-18204.

Fukumori R, Oba M, Izumi K, Otsuka M, Suzuki K, Gondaira S et al. Effects of butyrate supplementation on blood glucagon-like peptide-2 concentration and gastrointestinal functions of lactating dairy cows fed diets differing in starch content. Journal of Dairy Science. 2020; 103(4):3656–3667. doi: 10.3168/jds.2019-17677.

Olsen MA, Vhile SG, Porcellato D, Kidane A, Skeie SB. Feeding concentrates with different protein sources to high-yielding, mid-lactation Norwegian Red cows: effect on cheese ripening. Journal of Dairy Science. 2021;104(4):4062–4073. doi: 10.3168/jds.2020-19226.

Hanlon ME, Moorby JM, McConochie HR, Foskolos A. Effects of addition of nutritionally improved straw in dairy cow diets at 2 starch levels. Journal of Dairy Science. 2020;103(11):10233–10244. doi: 10.3168/jds.2020-18360.

Tricarico JM, Kebreab E, Wattiaux MA. MILK Symposium review: Sustainability of dairy production and consumption in low-income countries with emphasis on productivity and environmental impact. Journal of Dairy Science. 2020;103(11):9791–9802. doi: 10.3168/jds.2020-18269.

Fessenden SW, Ross DA, Block E, Van Amburgh ME. Comparison of milk production, intake, and total-tract nutrient digestion in lactating dairy cattle fed diets containing either wheat middlings and urea, commercial fermentation by-product, or rumen-protected soybean meal. Journal of Dairy Science. 2020;103(6):5090–5101. doi: 10.3168/jds.2019-17744.

Mejía E, Mahecha L, Angulo J. Tithonia diversifolia: especie para ramoneo en sistemas silvopastoriles y métodos para estimar su consumo. Agronomía Mesoamericana. 2016;28(1):289–302. doi: 10.15517/am.v28i1.22673.

Huertas MA, Mayorga OL, García YM, Holguín VA, Mora J. In vitro methane production from silages based on Cenchrus purpureus mixed with Tithonia diversifolia in different proportions. Acta Scientiarum: Animal Sciences. 2021;43(e51322):1–11. doi: 10.4025/actascianimsci.v43i1.51322.

Ladeska V, Dewanti E, Sari DI. Pharmacognostical studies and determination of total flavonoids of paitan (Tithonia diversifolia (Hemsl.) A. Gray. Pharmacognosy Journal. 2019;11(6):1256–1261. doi: 10.5530/pj.2019.11.195.

Cardona JL, Mahecha L, Angulo J. Estimación de metano en vacas pastoreando sistemas silvopastoriles con Tithonia diversifolia y suplementadas con grasas polinsaturadas. Revista Científica de la Facultad de Ciencias Veterinarias de la Universidad de Zulia. 2019;29(2):107–118.

Angulo J, Nemocón AM, Posada SL, Mahecha L. Producción, calidad de leche y análisis económico de vacas holstein suplementadas con ensilaje de botón de oro (Tithonia diversifolia) o ensilaje de maíz. Biotecnología en el Sector Agropecuario y Agroindustrial. 2022;20(1):27–40. doi: 10.18684/bsaa.v20.n1.2022.1535.

Carvalho JN de, Pires AJV, Silva FF da, Veloso CM, Santos CL dos, Carvalho GGP de. Desempenho de ovinos mantidos com dietas com capim-elefante ensilado com diferentes aditivos. Revista Brasileira de Zootecnia. 2009;38(6):994–1000. doi: 10.1590/S1516-35982009000600004.

Torres P, Pérez A, Marmolejo LF, Ordoñez JA, García RE. Una mirada a la agroindusria de extracción de almidón de yuca, desde la estandarización de procesos. Revista EIA. 2010;14(1):23–38.

Romero R, Alcívar E, Alpízar J. Afrecho de yuca como sustituto parcial del maíz en la alimentación de cerdos de engorde. La Técnica: Revista de las Agrociencias. 2017;Esp(2):54–61. doi: 10.33936/la_tecnica.v0i0.974.

Carranco ME, Barrita V, Fuente B, Ávila E, Sanginés L. Inclusión de harina de Tithonia diversifolia en raciones para gallinas ponedoras de primer ciclo y su efecto sobre la pigmentación de yema de huevo. Revista Mexicana de Ciencias Pecuarias. 2020;11(2):355–368. doi: 10.22319/rmcp.v11i2.5090.

Londoño J, Mahecha L, Angulo J. Desempeño agronómico y valor nutritivo de Tithonia diversifolia (Hemsl.) A Gray para la alimentación de bovinos. Revista Colombiana de Ciencia Animal-RECIA. 2019;11(1):28–41. doi: 10.24188/recia.v0.n0.2019.693.

Silva AM, Santos MV, Silva LD, Santos JB, Ferreira EA, Santos LDT. Effects of irrigation and nitrogen fertilization rates on yield, agronomic efficiency and morphophysiology in Tithonia diversifolia. Agricultural Water Management. 2021;248:106782. doi: 10.1016/j.agwat.2021.106782.

Herrera RS, Verdecia DM, Ramírez JL. Chemical composition, secondary and primary metabolites of Tithonia diversifolia related to climate. Cuban Journal of Agricultural Science. 2020;54(3):425–433.

Rivera JE, Chará J, Gómez JF, Ruíz TE, Barahona R. Variabilidad fenotípica de Tithonia diversifolia A. Gray para la producción animal sostenible. Livestock Research for Rural Development. 2018;30(12):1–12.

Rivera JE, Ruíz TE, Chará J, Gómez JF, Barahona R. Biomass production and nutritional properties of promising genotypes of Tithonia diversifolia (Hemsl.) A. Gray under different environments. Tropical Grasslands-Forrajes Tropicales. 2021;9(3):280–291. doi: 10.17138/tgft(9)280-291.

Gallego LA, Mahecha L, Angulo J. Calidad nutricional de Tithonia diversifolia Hemsl. A Gray bajo tres sistemas de siembra en el trópico alto. Agronomía Mesoamericana. 2017;28(1):213–222. doi: 10.15517/am.v28i1.21671.

Guatusmal C, Escobar LD, Meneses DH, Cardona JL, Castro E. Producción y calidad de Tithonia diversifolia y Sambucus nigra en trópico altoandino colombiano. Agronomía Mesoamericana. 2020;31(1):193–208. doi: 10.15517/am.v31i1.36677.

Gallego LA, Mahecha L, Angulo J. Producción, calidad de leche y beneficio:costo de suplementar vacas holstein con Tithonia diversifolia. Agronomía Mesoamericana. 2017;28(2):357–370. doi: 10.15517/ma.v28i2.25945.

Olabode OS, Sola O, Akanbi WB, Adesina GO, Babajide PA. Evaluation of Tithonia diversifolia (Hemsl.) A Gray for soil improvement. World Journal of Agricultural Sciences. 2007;3(4):503–507.

Owoyele VB, Wuraola CO, Soladoye AO, Olaleye SB. Studies on the anti-inflammatory and analgesic properties of Tithonia diversifolia leaf extract. Journal of Ethnopharmacology. 2004;90(2–3):317–321. doi: 10.1016/j.jep.2003.10.010.

Oyewole IO, Ibidapo CA, Moronkola DO, Oduola AO, Adeoye GO, Anyasor GN et al. Anti-malarial and repellent activities of Tithonia diversifolia (Hemsl.) leaf extracts. Journal of Medicinal Plants Research. 2008;2(8):171–175. doi: 10.5897/JMPR.9000104.

Roa ML, Corredor JR, Hernández MC. Physiological behavior of broilers using diets with Tithonia diversifolia and probiotics. Archivos de Zootecnia. 2020;69(268):406–417. doi: 10.21071/az.v69i268.5388.

Loya JL, Vega E, Gómez A, Navarrete R, Calvo C, García IA et al. Rumen fermentation and diet degradability in sheep fed sugarcane (Saccharum officinarum) silage supplemented with Tithonia diversifolia or alfalfa (Medicago sativa) and rice polishing. Austral Journal of Veterinary Sciences. 2020;52(2):55–61. doi: 10.4067/S0719-81322020000200055.

Arief A, Rusdimansyah R, Sowmen S, Pazla R, Rizqan RP. Milk production and quality of Etawa crossbreed dairy goat that given Tithonia diversifolia corn waste and concentrate based palm kernel cake. Biodiversitas Journal of Biological Diversity. 2020;21(9):4004–4009. doi: 10.13057/biodiv/d210910.

Khan FV, Fualefac DH, Augustin KS, Matho A, Florence F, Hervé MK et al. Effects of graded levels of boiled wild sunflower (Tithonia diversifolia Hemsl A. Gray) leaf meal on growth and carcass characteristics of rabbits. Journal of Animal & Plant Sciences. 2019;41(2):6940–6950. doi: 10.35759/JAnmPlSci.v41-2.7.

Montero JV, Macas KM, González KT, Mendoza CF. Evaluación del botón de oro (Tithonia diversifolia) en la alimentación de cuyes. Idesia (Arica). 2019;37(4):5–9. doi: 10.4067/S0718-34292019000400005.

Gallego LA, Machena L, Angulo J. Potencial forrajero de Tithonia diversifolia Hemsl. A Gray en la producción de vacas lecheras. Agronomía Mesoamericana. 2014;25(2):393–403. doi: 10.15517/am.v25i2.15454.

Oluwasola TA, Dairo FAS. Proximate composition, amino acid profile and some anti-nutrients of Tithonia diversifolia cut at two different times. African Journal of Agricultural Research. 2016;11(38):3659–3663. doi: 10.5897/AJAR2016.10910.

Holguín VA, Cuchillo M, Mazabel J, Quintero S, Mora J. Efecto de la mezcla ensilada de Penisetum purpureum y Tithonia diversifolia sobre la fermentación ruminal in vitro y su emisión de metano en el sistema RUSITEC. Revista Mexicana de Ciencias Pecuarias. 2020;11(1):19–37. doi: 10.22319/rmcp.v11i1.4740.

Juárez FI, Pell AN, Blake RW, Montero M, Pinos JM. In vitro ruminal degradation of neutral detergent fiber insoluble protein from tropical pastures fertilized with nitrogen. Revista Mexicana de Ciencias Pecuarias. 2018;9(3):588–600. doi: 10.22319/rmcp.v9i3.4490.

Arias LM, Alpízar A, Castillo MÁ, Camacho MI, Arronis V, Padilla J. Producción, calidad bromatológica de la leche y los costos de suplementación con Tithonia diversifolia (Hemsl.) A. Gray, en vacas Jersey. Pastos y Forrajes. 2018;41(4):266–272.

Cardona JL, Mahecha L, Angulo J. Efecto sobre la fermentación in vitro de mezclas de Tithonia diversifolia, Cenchrus clandestinum y grasas poliinsaturadas. Agronomía Mesoamericana. 2017;28(2):405–426. doi: 10.15517/ma.v28i2.25697.

Castaño G, Cardona J. Engorde de conejos alimentados con Tithonia diversifolia, Trichanthera gigantea y Arachis pintoi. Revista U.D.C.A. Actualidad & Divulgación Científica. 2015;18(1):147–154. doi: 10.31910/rudca.v18.n1.2015.463.

Elizondo JA. Calidad nutricional y consumo por cabras de forraje de botón de oro (Tithonia diversifolia). Agronomía Costarricense. 2021;5(2):135–142. doi: 10.15517/rac.v45i2.47774.

Mahecha L, Londoño JD, Angulo J. Agronomic and nutritional asssessment of an intensive silvopastoral system: Tithonia diversifolia, Sambucus nigra, Cynodon nlemfuensis, and Urochloa plantaginea. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2022;92:37–47. doi: 10.1007/s40011-021-01282-7.

Mahecha L, Escobar JP, Suárez JF, Restrepo LF. Tithonia diversifolia (Hemsl.) Gray (botón de oro) como suplemento forrajero de vacas F1 (Holstein por Cebú). Livestock Research for Rural Development. 2007;19(2):16.

Navas A, Montaña V. Comportamiento de Tithonia diversifolia bajo condiciones de bosque húmedo tropical. Revista de Investigaciones Veterinarias del Perú. 2019;30(2):721–732. doi: 10.15381/rivep.v30i2.15066.

Ramos L, Apráez JE, Cortes KS, Apráez JJ. Nutritional, antinutritional and phenological characterization of promising forage species for animal feeding in a cold tropical zone. Revista de Ciencias Agrícolas. 2021;38(1):86–96. doi: 10.22267/rcia.213801.152.

National Resarch Council. Nutrient Requirements of Dairy Cattle. 7th ed. Washington, DC: National Academies Press; 2001.

Avellaneda Y, Mancipe EA, Vargas J de J. Effect of regrowth period on morphological development and chemical composition of kikuyu grass (Cenchrus clandestinus) in Colombian’s highlands. Revista CES Medicina Veterinaria y Zootecnia. 2020;15(2):23–37. doi: 10.21615/cesmvz.15.2.2.

Vargas J, Pabon ML, Carulla JE. Methane emissions from lambs fed kikuyu hay alone or mixtured with lotus hay. Archivos Latinoamericanos de Producción Animal. 2021;29(1–2):1–9. doi: 10.53588/alpa.291201.

Vargas J de J, Sierra AM, Mancipe EA, Avellaneda Y. El kikuyo, una gramínea presente en los sistemas de rumiantes en trópico alto colombiano. CES Medicina Veterinaria y Zootecnia. 2018;13(2):137–156. doi: 10.21615/cesmvz.13.2.4.

Cabanilla MG, Meza CJ, Avellaneda JH, Meza MT, Vivas W, Meza GA. Desempeño agronómico y valor nutricional en Tithonia diversifolia (Hemsl.) A Gray bajo un sistema de corte. Ciencia y Tecnología. 2021;14(1):71–78. doi: 10.18779/cyt.v14i1.450.

Vargas VT, Pérez P, López S, Castillo E, Cruz C, Jarillo J. Producción y calidad nutritiva de Tithonia diversifolia (Hemsl.) A. Grey en tres épocas del año y su efecto en la preferencia por ovinos Pelibuey. Revista Mexicana de Ciencias Pecuarias. 2022;13(1):240–257. doi: 10.22319/rmcp.v13i1.5906.

Botero JM, Gómez A, Botero MA. Rendimiento, parámetros agronómicos y calidad nutricional de la Tithonia diversifolia con base en diferentes niveles de fertilización. Revista Mexicana de Ciencias Pecuarias. 2019;10(3):789–800. doi: 10.22319/rmcp.v10i3.4667.

Cerdas R. Extracción de nutrientes y productividad del botón de oro (Tithonia diversifolia) con varias dosis de fertilización nitrogenada. InterSedes. 2018;19(39):171–187. doi: 10.15517/isucr.v19i39.34076.

Kammes KL, Allen MS. Rates of particle size reduction and passage are faster for legume compared with cool-season grass, resulting in lower rumen fill and less effective fiber. Journal of Dairy Science. 2012;95(6):3288–3297. doi: 10.3168/jds.2011-5022.

Maldini G, Allen MS. Effects of rate and amount of propionic acid infused into the rumen on feeding behavior of Holstein cows in the postpartum period. Journal of Dairy Science. 2019;102(9):8120–8126. doi: 10.3168/jds.2019-16307.

McKay ZC, Lynch MB, Mulligan FJ, Rajauria G, Miller C, Pierce KM. The effect of concentrate supplementation type on milk production, dry matter intake, rumen fermentation, and nitrogen excretion in late-lactation, spring-calving grazing dairy cows. Journal of Dairy Science. 2019;102(6):5042–5053. doi: 10.3168/jds.2018-15796.

van Niekerk JK, Middeldorp M, Guan LL, Steele MA. Preweaning to postweaning rumen papillae structural growth, ruminal fermentation characteristics, and acute-phase proteins in calves. Journal of Dairy Science. 2021;104(3):3632–3645. doi: 10.3168/jds.2020-19003.

Górka P, Kowalski ZM, Zabielski R, Guilloteau P. Invited review: Use of butyrate to promote gastrointestinal tract development in calves. Journal of Dairy Science. 2018;101(6):4785–4800. doi: 10.3168/jds.2017-14086.

Khan MA, Lee HJ, Lee WS, Kim HS, Kim SB, Ki KS et al. Starch source evaluation in calf starter: I. Feed consumption, body weight gain, structural growth, and blood metabolites in Holstein calves. Journal of Dairy Science. 2007;90(11):5259–5268. doi: 10.3168/jds.2007-0338.

Hassan F, Arshad MA, Ebeid HM, Rehman MS, Khan MS, Shahid S et al. Phytogenic additives can modulate rumen microbiome to mediate fermentation kinetics and methanogenesis through exploiting diet–microbe interaction. Frontiers in Veterinary Science. 2020;7:576801. doi: 10.3389/fvets.2020.575801.

Khan MA, Lee HJ, Lee WS, Kim HS, Ki KS, Hur TY et al. Structural growth, rumen development, and metabolic and immune responses of Holstein male calves fed milk through step-down and conventional methods. Journal of Dairy Science. 2007;90(7):3376–3387. doi: 10.3168/jds.2007-0104.

Lesmeister KE, Tozer PR, Heinrichs AJ. Development and analysis of a rumen tissue sampling procedure. Journal of Dairy Science. 2004;87(5):1336–1344. doi: 10.3168/jds.S0022-0302(04)73283-X.

Benchaar C, McAllister TA, Chouinard PY. Digestion, ruminal fermentation, ciliate protozoal populations, and milk production from dairy cows fed cinnamaldehyde, quebracho condensed tannin, or Yucca schidigera saponin extracts. Journal of Dairy Science. 2008;91(12):4765–4777. doi: 10.3168/jds.2008-1338.

Grazziotin RCB, Halfen J, Rosa F, Schmitt E, Anderson JL, Ballard V et al. Altered rumen fermentation patterns in lactating dairy cows supplemented with phytochemicals improve milk production and efficiency. Journal of Dairy Science. 2020;103(1):301–312. doi: 10.3168/jds.2019-16996.

Ahanger MA, Bhat JA, Siddiqui MH, Rinklebe J, Ahmad P. Integration of silicon and secondary metabolites in plants: a significant association in stress tolerance. Journal of Experimental Botany. 2020;71(21):6758–6774. doi: 10.1093/jxb/eraa291.

Ferreira AL, Lobato AB, Lopes R, de Menezes É, Ferreira CW, Moreira SS. Chemical characterization, antioxidant, citotoxic and microbiological activities of essential oil of leaf of Tihtonia diversifolia A. Gray (Asteraceae). Pharmaceuticals. 2019;12(1):34. doi: 10.3390/ph12010034.

Masood A, Tasleem F, Patricia OA, Ali MS, Hussain S, Siddiqui F et al. Assessment of pharmacological potential and safety profile of Tithonia diversifolia. Pakistan Journal of Pharmacology. 2017;34(1):45–58.

Rivera JE, Villegas G, Chará J, Durango SG, Romero MA, Verchot L. Effect of Tithonia diversifolia (Hemsl.) A. Gray intake on in vivo methane (CH4) emission and milk production in dual-purpose cows in the Colombian Amazonian piedmont. Translational Animal Science. 2022;6(4):1–12. doi: 10.1093/tas/txac139.

Ribeiro RS, Terry SA, Sacramento JP, Silveira SRe, Bento CBP, da Silva E, et al. Tithonia diversifolia as a supplementary feed for dairy cows. PLoS ONE. 2016;11(12):e0165751. doi: 10.1371/journal.pone.0165751.

Terry SA, Ribeiro RS, Freitas DS, Delarota GD, Pereira LGR, Tomich TR, et al. Effects of Tithonia diversifolia on in vitro methane production and ruminal fermentation characteristics. Animal Production Science. 2016;56(3):437-441. doi: 10.1071/AN15560.

Roopa MS, Shubharani R, Rhetso T, Sivaram V. Comparative analysis of phytochemical constituents, free radical scavenging activity and GC-MS analysis of leaf and flower extract of Tithonia diversifolia (Hemsl.) A. Gray. International Journal of Pharmaceutical Sciences and Research. 2020;11(10):5081–5090. doi: 10.13040/IJPSR.0975-8232.11(10).5081-90.

Pretti IR, da Luz AC, Jamal CM, Batitucci M do CP. Variation of biochemical and antioxidant activity with respect to the phenological stage of Tithonia diversifolia Hemsl. (Asteraceae) populations. Industrial Crops and Products. 2018;121(1):241–249. doi: 10.1016/j.indcrop.2018.04.080.

Jurado P, Sörensen PM. Characterization of saponin foam from Saponaria officinalis for food applications. Food Hydrocolloids. 2020;101:105541. doi: 10.1016/j.foodhyd.2019.105541.

Holtshausen L, Chaves AV, Beauchemin KA, McGinn SM, McAllister TA, Odongo NE et al. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. Journal of Dairy Science. 2009;92(6):2809–2821. doi: 10.3168/jds.2008-1843.

Guyader J, Eugène M, Doreau M, Morgavi DP, Gérard C, Martin C. Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows. Journal of Dairy Science. 2017;100(3):1845–1855. doi: 10.3168/jds.2016-11644.

Kozłowska M, Cieślak A, Jóźwik A, El‐Sherbiny M, Stochmal A, Oleszek W et al. The effect of total and individual alfalfa saponins on rumen methane production. Journal of the Science of Food and Agriculture. 2020;100(5):1922–1930. doi: 10.1002/jsfa.10204.

Firkins JL. Invited review: Advances in rumen efficiency. Applied Animal Science. 2021;37(4):388–403. doi: 10.15232/aas.2021-02163.

Dlamini BS, Chen C-R, Shyu DJH, Chang C-I. Flavonoids from Tithonia diversifolia and their antioxidant and antibacterial activity. Chemistry of Natural Compounds. 2020;56(5):906–908. doi: 10.1007/s10600-020-03182-0.

Verdecia DM, Olmo C, Hernández LG, Ojeda A, Ramírez JL, Martínez Y. Chemical composition of the foliage meal of Tithonia diversifolia. Enfoque UTE. 2022;13(4):1–10. doi: 10.29019/enfoqueute.856.

Aguerre MJ, Duval B, Powell JM, Vadas PA, Wattiaux MA. Effects of feeding a quebracho–chestnut tannin extract on lactating cow performance and nitrogen utilization efficiency. Journal of Dairy Science. 2020;103(3):2264–2271. doi: 10.3168/jds.2019-17442.

Schmitt MH, Ward D, Shrader AM. Salivary tannin-binding proteins: a foraging advantage for goats? Livestock Science. 2020;234:103974. doi: 10.1016/j.livsci.2020.103974.

Menci R, Coppa M, Torrent A, Natalello A, Valenti B, Luciano G et al. Effects of two tannin extracts at different doses in interaction with a green or dry forage substrate on in vitro rumen fermentation and biohydrogenation. Animal Feed Science and Technology. 2021;278:114977. doi: 10.1016/j.anifeedsci.2021.114977.

Roca AI, Dillard SL, Soder KJ. Ruminal fermentation and enteric methane production of legumes containing condensed tannins fed in continuous culture. Journal of Dairy Science. 2020;103(8):7028–7038. doi: 10.3168/jds.2019-17627.

Menci R, Natalello A, Luciano G, Priolo A, Valenti B, Difalco A et al. Cheese quality from cows given a tannin extract in 2 different grazing seasons. Journal of Dairy Science. 2021;104(9):9543–9555. doi: 10.3168/jds.2021-20292.

Castaño GA, Pabón ML, Carulla JE. Concentration of trans-vaccenic and rumenic acids in the milk from grazing cows supplemented with palm oil, rice bran or whole cottonseed. Revista Brasileira de Zootecnia. 2014;43(6):315–326. doi: 10.1590/S1516-35982014000600006.

Tedeschi LO, Muir JP, Naumann HD, Norris AB, Ramírez-Restrepo CA, Mertens-Talcott SU. Nutritional aspects of ecologically relevant phytochemicals in ruminant production. Frontiers in Veterinary Science. 2021;8:628445. doi: 10.3389/fvets.2021.628445.

Sousa LB, Albuquerque ML, de Oliveira HG, Sousa LB, e Silva LS, Machado FS et al. Prosopis juliflora piperidine alkaloid extract levels in diet for sheep change energy and nitrogen metabolism and affect enteric methane yield. Journal of the Science of Food and Agriculture. 2022;102(12):5132–5140. doi: 10.1002/jsfa.11864.

Rashama C, Ijoma GN, Matambo TS. The effects of phytochemicals on methanogenesis: insights from ruminant digestion and implications for industrial biogas digesters management. Phytochemistry Reviews. 2021;20(6):1245–1271. doi: 10.1007/s11101-021-09744-6.

Piao S, Liu Q, Chen A, Janssens IA, Fu Y, Dai J et al. Plant phenology and global climate change: Current progresses and challenges. Global Change Biology. 2019;25(6):1922–1940. doi: 10.1111/gcb.14619.

Enriquez D, Cruz T, Teixeira DL, Steinfort U. Phenological stages of Mediterranean forage legumes, based on the BBCH scale. Annals of Applied Biology. 2020;176(3):357–368. doi: 10.1111/aab.12578.

Asaadi AM, Dadkhah AR. The study of forage quality of Haloxylon aphyllum and Eurotia ceratoides in different phenological stages. Research Journal of Biological Sciences. 2010;5(7):470–475. doi: 10.3923/rjbsci.2010.470.475.

Arzani H, Zohdi M, Fish E, Zahedi Amiri GH, Nikkhah A, Wester D. Phenological effects on forage quality of five grass species. Journal of Range Management. 2004;57(6):624–629. doi: 10.2111/1551-5028(2004)057[0624:peofqo]2.0.co;2.

Andueza D, Picard F, Note P, Carrère P. Relationship between the chemical composition, nutritive value and the maturity stage of six temperate perennial grasses during their first growth cycle along an altitude gradient. European Journal of Agronomy. 2021;130:126364. doi: 10.1016/j.eja.2021.126364.

Verdecia DM, Ramírez JL, Leonard I, Álvarez Y, Bazán Y, Bodas R et al. Rendimiento productivo y composición química del arbusto forrajero Tithonia diversifolia en una zona del Valle del Cauto. REDVET: Revista Electrónica de Veterinaria. 2011;12(5):1–13.

Temel S, Surmen M, Tan M. Effects of growth stages on the nutritive value of specific halophyte species in saline grasslands. Journal of Animal and Plant Sciences. 2015;25(5):1419–1428.

Coblentz WK, Akins MS, Kalscheur KF, Brink GE, Cavadini JS. Effects of growth stage and growing degree day accumulations on triticale forages: 2. In vitro disappearance of neutral detergent fiber. Journal of Dairy Science. 2018;101(10):8986–9003. doi: 10.3168/jds.2018-14867.

Kara K. The investigation of fatty acids compositions of Jerusalem artichoke (Helianthus tuberosus) herbage harvested at different phenological stages. Ankara Üniversitesi Veteriner Fakültesi Dergisi. 2021;68(3):259–267. doi: 10.33988/auvfd.753067.

Ayeni AO, Lordbanjou DT, Majek BA. Tithonia diversifolia (Mexican sunflower) in south-western Nigeria: occurrence and growth habit. Weed Research. 1997;37(6):443–449. doi: 10.1046/j.1365-3180.1997.d01-72.x.

Ruiz TE, Torres V, Febles G, Díaz H, González J. Empleo de la modelación para estudiar el crecimiento del material vegetal 23 de Tithonia diversifolia. Revista Cubana de Ciencia Agrícola. 2012;46(1):23–29.

Ruiz TE, Torres V, Febles G, Díaz H, González J. Utilización de la modelación para estudiar el crecimiento de Tithonia diversifolia colecta 17. Revista Cubana de Ciencia Agrícola. 2012;46(3):243–247.

Ruiz TE, Torres V, Febles G, Díaz H, González J. Estudio del comportamiento de ecotipos destacados de Tithonia diversifolia en relación con algunos componentes morfológicos. Livestock Research for Rural Development. 2013;25(9):154.

Ruiz TE, Torres V, Febles G, Díaz H, Sarduy L, González J et al. Utilización de la modelación para estudiar el crecimiento de Tithonia diversifolia colecta 10. Revista Cubana de Ciencia Agrícola. 2012;46(3):237–242.

Verdecia DM, Herrera RS, Ramírez JL, Bodas R, Leonard I, Giráldez FJ et al. Yield components, chemical characterization and polyphenolic profile of Tithonia diversifolia in Valle del Cauto, Cuba. Cuban Journal of Agricultural Science. 2018;52(4):457–471.

Torres P, Valencia YC, Canchala T. Modelación de la separación de partículas no retenidas en la etapa de sedimentación en canales: proceso de extracción de almidón de yuca. Biotecnología en el Sector Agropecuario y Agroindustrial. 2014;12(2):81–89.

García C, Salcedo J, Alvis A. Condiciones óptimas de la etapa de lixiviación en la extracción de almidón de yuca. Biotecnología en el Sector Agropecuario y Agroindustrial. 2018;16(1):62–67. doi: 10.18684/bsaa.v16n1.1146.

Sikiru AB., Yousuf MB, Ademola SG. Cassava bran–fish processing waste as dry season feed resources for sheep in Nigeria Southern Guinea Savannah. Journal of Rangeland Science. 2018;8(1):11–22.

Chiquiza LN, Montoya OI, Restrepo C, Orozco F. Estudio de la microbiota del proceso de producción de almidón agrio de yuca. Información Tecnológica. 2016;27(5):3–14. doi: 10.4067/S0718-07642016000500002.

Serna T, Contreras Y, Lozano M, Salcedo J, Hernández J. Variación del método de secado en la fermentación espontánea de almidón nativo de yuca. Ciencia y Tecnología Alimentaria. 2017;15(1):50. doi: 10.24054/16927125.v1.n1.2017.2962.

Salcedo JG, Contreras K, García A, Fernandez A. Modelado de la cinética de secado del afrecho de yuca (Manihot esculenta Crantz). Revista Mexicana de Ingeniería Química. 2016;15(3):883–891.

Diarra SS, Devi A. Feeding value of some cassava by-products meal for poultry: a review. Pakistan Journal of Nutrition. 2015;14(10):735–741. doi: 10.3923/pjn.2015.735.741.

Acuña LL, Hurtado VL, Torres DM. Evaluación de la calidad del huevo de codornices (Coturnix coturnix japonica) utilizando algunos alimentos energéticos. Revista Sistemas de Producción Agroecológicos. 2014;5(2):30–43. doi: 10.22579/22484817.653.

Abouelezz KFM, Wang S, Xia WG, Chen W, Elokil AA, Zhang YN et al. Effects of dietary inclusion of cassava starch-extraction-residue meal on egg production, egg quality, oxidative status, and yolk fatty acid profile in laying ducks. Poultry Science. 2022;101(9):102015. doi: 10.1016/j.psj.2022.102015.

Rosales JM, Urbietta H. Comparativo de niveles de afrecho de yuca en raciones para cerdos en crecimiento y engorde, en la zona de Pucallpa. Folia Amazonica. 1993 5(1–2):159–169. doi: 10.24841/fa.v5i1-2.238.

González G, Rodríguez AA. Effect of storage method on fermentation characteristics, aerobic stability, and forage intake of tropical grasses ensiled in round bales. Journal of Dairy Science. 2003;86(3):926–933. doi: 10.3168/jds.S0022-0302(03)73675-3.

Charmley E. Towards improved silage quality–A review. Canadian Journal of Animal Science. 2001;81(2):157–168. doi: 10.4141/A00-066.

Van Soest PJ. Nutritional ecology of the ruminant. 2nd ed. Ithaca, Nueva York: Cornell University Press; 1994. 476 pp.

Driehuis F, Wilkinson JM, Jiang Y, Ogunade I, Adesogan AT. Silage review: animal and human health risks from silage. Journal of Dairy Science. 2018;101(5):4093–4110. doi: 10.3168/jds.2017-13836.

Bernardes TF, Gervásio JRS, De Morais G, Casagrande DR. Technical note: a comparison of methods to determine pH in silages. Journal of Dairy Science. 2019;102(10):9039–9042. doi: 10.3168/jds.2019-16553.

Dong Z, Shao T, Li J, Yang L, Yuan X. Effect of alfalfa microbiota on fermentation quality and bacterial community succession in fresh or sterile Napier grass silages. Journal of Dairy Science. 2020;103(5):4288–4301. doi: 10.3168/jds.2019-16961.

Kaewpila C, Khota W, Gunun P, Kesorn P, Cherdthong A. Strategic addition of different additives to improve silage fermentation, aerobic stability and in vitro digestibility of Napier grasses at late maturity stage. Agriculture. 2020;10(7):262. doi: 10.3390/agriculture10070262.

Higginbotham GE, Mueller SC, Bolsen KK, DePeters EJ. Effects of inoculants containing propionic acid bacteria on fermentation and aerobic stability of corn silage. Journal of Dairy Science. 1998;81(8):2185–2192. doi: 10.3168/jds.S0022-0302(98)75797-2.

Li D, Ni K, Zhang Y, Lin Y, Yang F. Fermentation characteristics, chemical composition and microbial community of tropical forage silage under different temperatures. Asian-Australasian Journal of Animal Sciences. 2019;32(5):665–674. doi: 10.5713/ajas.18.0085.

Khota W, Pholsen S, Higgs D, Cai Y. Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulase and inoculant. Journal of Dairy Science. 2016;99(12):9768–9781. doi: 10.3168/jds.2016-11180.

Arroquy JI, Cornacchione MV, Colombatto D, Kunst C. Chemical composition and in vitro ruminal degradation of hay and silage from tropical grasses. Canadian Journal of Animal Science. 2014;94(4):705–715. doi: 10.4141/cjas-2014-014.

Adesogan AT, Krueger N, Salawu MB, Dean DB, Staples CR. The influence of treatment with dual purpose bacterial inoculants or soluble carbohydrates on the fermentation and aerobic stability of bermudagrass. Journal of Dairy Science. 2004;87(10):3407–3416. doi: 10.3168/jds.S0022-0302(04)73476-1.

Quiñones JD, Cardona JL, Castro E. Ensilaje de arbustivas forrajeras para sistemas de alimentación ganadera del trópico altoandino. Revista de Investigaciones Altoandinas. 2020;22(3):285–301. doi: 10.18271/ria.2020.662.

Castaño GA. Efecto del proceso de ensilaje sobre el valor nutricional de Pennisetum purpureum, Tithonia diversifolia y Trichanthera gigantea. Investigaciones Unisarc. 2012;10(2):22–36.

Daniel JLP, Bernardes TF, Jobim CC, Schmidt P, Nussio LG. Production and utilization of silages in tropical areas with focus on Brazil. Grass and Forage Science. 2019;74(2):188–200. doi: 10.1111/gfs.12417.

Araújo JAS, Almeida JCC, Reis RA, Carvalho CAB, Barbero RP. Harvest period and baking industry residue inclusion on production efficiency and chemical composition of tropical grass silage. Journal of Cleaner Production. 2020;266:121953. doi: 10.1016/j.jclepro.2020.121953.

Gao R, Wang B, Jia T, Luo Y, Yu Z. Effects of different carbohydrate sources on alfalfa silage quality at different ensiling days. Agriculture. 2021;11(1):58. doi: 10.3390/agriculture11010058.

Yitbarek MB, Tamir B. Silage additives: review. Open Journal of Applied Sciences. 2014;4(5):258–274. doi: 10.4236/ojapps.2014.45026.

Bureenok S, Suksombat W, Kawamoto Y. Effects of the fermented juice of epiphytic lactic acid bacteria (FJLB) and molasses on digestibility and rumen fermentation characteristics of ruzigrass (Brachiaria ruziziensis) silages. Livestock Science. 2011;138(1–3):266–271. doi: 10.1016/j.livsci.2011.01.003.

Wang J, Wang JQ, Zhou H, Feng T. Effects of addition of previously fermented juice prepared from alfalfa on fermentation quality and protein degradation of alfalfa silage. Animal Feed Science and Technology. 2009;151(3–4):280–290. doi: 10.1016/j.anifeedsci.2009.03.001.

Cardona JL, Escobar LD, Guatusmal C, Meneses DH, Ríos LM, Castro E. Efecto de la edad de cosecha en la digestibilidad y fraccionamiento energético de dos arbustivas forrajeras en Colombia. Pastos y Forrajes. 2020;43(3):254–262.

Kehoe SI, Dill KA, Breaker JD, Suen G. Effects of corn silage inclusion in preweaning calf diets. Journal of Dairy Science. 2019;102(5):4131–4137. doi: 10.3168/jds.2018-15799.

Buckmaster DR. Technical note: equipment matching for silage harvest. Applied Engineering in Agriculture. 2009;25(1):31–36. doi: 10.13031/2013.25423.

Lv B, Wei H, Li Y, Xue Z. Symbiotic exploration of silage machinery based on technological system evolution. Journal of Physics: Conference Series. 2021;2066(1):012087. doi: 10.1088/1742-6596/2066/1/012087.