The role of gut microbiota in the development of obesity in dogs

Main Article Content

María del Carmen Camacho-Rea
Diego Alfredo Cardoso Carmona

Abstract

The gut microbiota has become the subject of extensive research in the last decades. Intensive research has revealed its role in several functions related to energy metabolism as well as its importance in both health and illness. An imbalance in gut microbiota composition results in dysbiosis, which has been associated with metabolic disorders such as obesity. In the latter context, the gut microbiota appears to mediate the impact of diet on the host body weight. There are many studies in rodents that show profound changes in the composition and metabolic function of the gut microbiota in subjects with obesity, indicating its influence on the development of the problem. Usually, the microbiota of obese dogs has a modified Firmicutes:Bacteroidetes ratio, which returns to normal values after dietary intervention with diet-induced weight loss. The role of the gut microbiota on the development of dog obesity is a recent topic of research, which has been complex due to most of the studies being carried out using commercial extruded diets, which differ in their nutritional composition, resulting in controversial findings. Nevertheless, it has been shown that macro-nutrients from the diet are the most relevant factors that can modulate the microbiota’s composition in a particular way. Moreover, current studies indicate that a personalized nutritional intervention could modify the composition and function of gut microbiota in a positive manner, reducing the development of pathologies such as obesity.

Keywords:
Obesity Dogs Intestinal microbiota Nutritional disorders Metabolic disorders environmental factors

Article Details

References

World Health Organization. Obesity and overweight. 2020. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

Thiago HA, Vendramini HT, Macedo RV, Zafalon A, Matheus V, Macegoza V, et al. Serum metabolomics analysis reveals that weight loss in obese dogs results in a similar metabolic profile to dogs in ideal body condition. Metabolomics. 2021;17(3):27. doi: 10.1007/s11306-020-01753-4.

Kealy RD, Lawler DF, Ballam JM, Lust G, Biery DN, Smith GK, et al. Evaluation of the effect of limited food consumption on radiographic evidence of osteoarthritis in dogs. Journal of the American Veterinary Medical Association. 2000;217(11):1678-1680. doi: 10.2460/javma.2000.217.1678.

Lekcharoensuk C, Lulich JP, Osborne CA, Pusoonthornthum R, Allen TA, Koehler LA, et al. Patient and environmental factors associated with calcium oxalate urolithiasis in dogs. Journal of the American Veterinary Medical Association. 2000;217(4):515–519. doi: 10.2460/javma.2000.217.515.

Lund EM, Armstrong PJ, Kirk CA, Klausner JS. Prevalence and risk factors for obesity in adult dogs from private US veterinary practices. International Journal of Applied Research in Veterinary Medicine. 2006;4(2):177–186.

Bach JF, Rozanski EA, Bedenice D, Chan DL, Freeman LM, Lofgren JLS, et al. Association of expiratory airway dysfunction with marked obesity in healthy adult dogs. American Journal of Veterinary Research. 2007;68(6):670–675. doi: 10.2460/ajvr.68.6.670.

Sandøe P, Palmer C, Corr S, Astrup A, Bjørnvad CR. Canine and feline obesity: A one health perspective. Veterinary Record. 2014;175(24):610–616. doi: 10.1136/vr.g7521.

Salt C, Morris PJ, Wilson D, Lund EM, German AJ. Association between life span and body condition in neutered client owned dogs. Journal of Veterinary Internal Medicine. 2019;33(1):89-99. doi: 10.1111/jvim.15367.

Rafan E, Dennis RJ, O'Donovan CJ, Becker JM, Scott RA, Smith SP, et al. A deletion in the canine POMC gene is associated with weight and appetite in obesity-prone Labrador retriever dogs. Cell Metabolism. 2016;23(5):893–900. doi: 10.1016/j.cmet.2016.04.012.

Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences. 2004;101(44):15718–15723. doi: 10.1073/pnas.0407076101.

Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends in Endocrinology and Metabolism. 2015;26(9):493–501. doi: 10.1016/j.tem.2015.07.002.

Ghazalpour A, Cespedes I, Bennett BJ, Allayee H. Expanding role of gut microbiota in lipid metabolism. Current Opinions on Lipidology. 2016;27(2):141-147. doi: 10.1097/MOL.0000000000000278.

Boulangé L, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Medicine. 2016;8(42):1–12.

Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The Human Microbiome Project. Nature. 2007;449(7164):804–810. doi: 10.1038/nature06244.

Honneffer JB, Minamoto Y, Suchodolski JS. Microbiota alterations in acute and chronic gastrointestinal inflammation of cats and dogs. World Journal of Gastroenterology. 2014;20(44):16489–16497. doi: 10.3748/wjg.v20.i44.16489.

Abenavoli L, Scarpellini E, Colica C, Boccuto L, Salehi B, Sharifi-Rad J, et al. Gut microbiota and obesity: a role for probiotics. Nutrients. 2019;11(11):2690. doi: 10.3390/nu11112690.

Gao R, Zhu C, Li H, Yin M, Pan C, Huang L, et al. Dysbiosis signatures of gut microbiota along the sequence from healthy, young patients to those with overweight and obesity. Obesity. 2018;26(2):351–361. doi: 10.1002/oby.22088.

Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–1270. doi: 10.1016/j.cell.2012.01.035.

Hand D, Wallis C, Colyer A, Penn CW. Pyrosequencing the canine faecal microbiota: breadth and depth of biodiversity. PLoS One. 2013;8(1):e53115. doi: 10.1371/journal.pone.0053115.

Middelbos IS, Vester Boler BM, Qu A, White BA, Swanson KS, Fahey GC Jr. Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PLoS One. 2010;5(3):e9768. doi: 10.1371/journal.pone.0009768.

Handl S, Dowd SE, Garcia-Mazcorro JF, Steiner JM, Suchodolski JS. Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiological Ecology. 2011;76(2):301–310. doi: 10.1111/j.1574-6941.2011.01058.x.

Vazquez-Baeza Y, Hyde ER, Suchodolski JS, Knight R. Dog and human inflammatory bowel disease rely on overlapping yet distinct dysbiosis networks. Nature Microbiology. 2016;1:16177. doi: 10.1038/nmicrobiol.2016.177.

Garcia-Mazcorro JF, Dowd SE, Poulsen J, Steiner JM, Suchodolski JS. Abundance and short-term temporal variability of fecal microbiota in healthy dogs. Microbiology Open. 2012;1(3):340–347. doi: 10.1002/mbo3.36.

Switonski M, Mankowska M. Dog obesity–The need for identifying predisposing genetic markers. Research in Veterinary Science. 2013;95(3):831–836. doi: 10.1016/j.rvsc.2013.08.015.

Bäckhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, et al. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host and Microbe. 2012;12(5):611–622. doi: 10.1016/j.chom.2012.10.012.

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031. doi: 10.1038/nature05414.

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820.

Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–1023. doi: 10.1038/4441022a.

Duan M, Wang Y, Zhang Q, Zou R, Guo M, Zheng H. Characteristics of gut microbiota in people with obesity. PLoS One. 2021;16(8). eNumber: e0255446. doi: 10.1371/journal.pone.0255446.

Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI et al. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences. 2005;102(31):11070–11075. doi: 10.1073/pnas.0504978102.

Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host and Microbe. 2008;3(4):213–223. doi: 10.1016/ j.chom.2008.02.015.

Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A. Proteobacteria: a common factor in human diseases. BioMed Research International 2017;2017:9351507. doi: 10.1155/2017/9351507.

Cani PD, Osto M, Geurts L, Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes. 2012;3(4):279-288. doi: 10.4161/gmic.19625.

Handl S, German AJ, Holden SL, Dowd SE, et al. Faecal microbiota in lean and obese dogs. FEMS Microbiology Ecology. 2013;84(2):332−343. doi: 10.1111/1574-6941.12067.

Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang M, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proceedings of the National Academy of Sciences. 2010;107(44):18933–18938. doi: 10.1073/pnas.1007028107.

Xu Z, Knight R. Dietary effects on human gut microbiome diversity. British Journal of Nutrition. 2015;113(Suppl 1):S1–S5. doi: 10.1017/S0007114514004127.

Suchodolski JS, Ruaux CG, Steiner JM, Fetz K, Williams DA. Assessment of the qualitative variation in bacterial microflora among compartments of the intestinal tract of dogs by use of a molecular fingerprinting technique. American Journal of Veterinary Research. 2005;66(9):1556−1562. doi: 10.2460/ajvr.2005.66.1556.

Alexander C, Cross TL, Devendran S, Neumer F, Theis S, Ridlon JM, et al. Effects of prebiotic inulin-type fructans on blood metabolite and hormone concentrations and faecal microbiota and metabolites in overweight dogs. British Journal of Nutrition. 2018;120(6):711–720. doi: 10.1017/S00071145180 01952.

Bermingham EN, Maclean P, Thomas DG, Cave NJ, Young W. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ. 2017;5:e3019. doi: 10.7717/peerj.3019.

Bresciani F, Minamoto Y, Suchodolski JS, Galiazzo G, Vecchiato CG, Pinna C, et al. Effect of an extruded animal protein-free diet on fecal microbiota of dogs with food-responsive enteropathy. Journal Veterinary Internal Medicine. 2018;32(6):1903–1190. doi: 10.1111/jvim.15227.

Schauf S, de la Fuente G, Newbold CJ, Salas-Mani A, Torre C, Abecia L, et al. Effect of dietary fat to starch content on fecal microbiota composition and activity in dogs. Journal of Animal Science. 2018;96(9):3684–3698. doi: 10.1093/jas/sky264.

Herstad KMV, Gajardo K, Bakke AM, Moe L, Ludvigsen J, Rudi K, et al. A diet change from dry food to beef induces reversible changes on the faecal microbiota in healthy, adult client-owned dogs. BMC Veterinary Research. 2017;13(147):1-13. doi: 10.1186/s12917-017-1073-9.

Marchesi JR, Adams DH, Fava F, Hermes GDA, Hirschfield GM, Hold G, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65(2):330−339. doi: 10.1136/gutjnl-2015-309990.

Schmitz S, Suchodolski J. Understanding the canine intestinal microbiota and its modification by pro-, pre- and synbiotics- what is the evidence? Veterinary Medicine and Science. 2016;2(2):71–94. doi: 10.1002/vms3.17.

Gagné JW, Wakshlag JJ, Simpson KW, Dowd SE, Latchman S, Brown DA, et al. Effects of a synbiotic on fecal quality, short-chain fatty acid concentrations, and the microbiome of healthy sled dogs [PDF]. BMC Veterinary Research. 2013;9(246):1–10. doi: 10.1186/1746-6148-9-246.

Maynard C, Weinkove D. The gut microbiota and ageing. In: J Harris, V Korolchuk, editors. Biochemistry and Cell Biology of Ageing: Part I Biomedical Science. Subcellular Biochemistry. Vol. 90. Singapore: Springer; 2018. pp. 351-371. doi: 10.1007/978-981-13-2835-0_12.

Guard BC, Suchodolski JS. Horse Species Symposium: Canine intestinal microbiology and metagenomics: from phylogeny to function. Journal of Animal Science. 2016;94(6):2247–2261. doi: 10.2527/jas.2015-0029.

Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761-1772. doi: 10.2337/db06-1491.

Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Neyrinck AM, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60(11):2775-2786. doi: 10.2337/db11-0227.

Murphy EF, Cotter PD, Hogan A, O'Sullivan O, Joyce A, Fouhy F, et al. Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut. 2013;62(2):220-226. doi: 10.1136/gutjnl-2011-300705.

Fildes A, Charlton J, Rudisill C, Littlejohns P, Prevost AT, Gulliford MC. Probability of an obese person attaining normal body weight: cohort study using electronic health records. American Journal of Public Health. 2015;105(9):e54-e59. doi: 10.2105/AJPH.2015.302773.

German AJ, Titcomb JM, Holden SL, Queau Y, Morris PJ, Biourge V. Cohort study of the success of controlled weight loss programs for obese dogs. Journal of Veterinary Internal Medicine. 2015;29(6):1547–1555. doi: 10.1111/jvim.13629.

Duncan S, Lobley G, Holtrop G. Ince J, Johnstone AM, Louis P, et al. Human colonic microbiota associated with diet, obesity and weight loss. International Journal of Obesity. 2008;32(11):1720–1724. doi: 10.1038/ijo.2008.155.

Cotillard A, Kennedy S, Kong L, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–588. doi: 10.1038/nature12480.

Mori A, Goto A, Kibe R, Oda H, Kataoka Y, Sako T. Comparison of the effects of four commercially available prescription diet regimens on the fecal microbiome in healthy dogs. Journal of Veterinary Medical Science. 2019;81(12):1783-1790. doi: 10.1292/jvms.19-0055.

Kieler IN, Kamal S, Vitger AD, Nielsen DS, Lauridsen C, Bjornvad CR. Gut microbiota composition may relate to weight loss rate in obese pet dogs. Veterinary Medicine and Science. 2017;3(4):252-262. doi: 10.1002/vms3.80.

Santacruz A, Marcos A, Wärnberg J, Martí A, Martin-Matillas M, Campoy C, et al. Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity. 2009;17(10):1906-1915. doi: 10.1038/oby.2009.112.