Strong antibiotic resistance profiles in Salmonella spp. isolated from ground beef in Central Mexico

Main Article Content

Carlos Mario Campos Granados
Luz del Carmen Sierra Gómez Pedroso
Cindy F. Hernández-Pérez
Nayarit Emérita Ballesteros-Nova
María Salud Rubio-Lozano
Luisa María Sánchez-Zamorano
Enrique Jesús Delgado-Suárez

Abstract

We determined the prevalence of Salmonella enterica (SE) in retail ground beef sold across eight state capital cities from Central Mexico (n = 115) as well as the antimicrobial resistance (AMR) phenotype and genotype of the isolates obtained. SE was detected in 48/115 samples, with variable prevalence (10–80 %) across geographical regions (c= 24.2, P = 0.0021). We collected 116 isolates and observed circulation of serovars implicated in human salmonellosis in Mexico (Agona, Anatum, Infantis, Newport, Derby, Give y Typhimurium). Resistance was more frequently observed for tetracycline (39.7 %), chloramphenicol (37.9 %), streptomycin (37.1 %), trimetoprim-sulfamethoxazole (31.0 %), and ampicillin (28.4 %). Resistance against azithromycin was moderate (14.7 %), few isolates resisted cephalosporins (2.6-3.4 %), all were susceptible to carbapenems, and 38.8 % of the isolates were multidrug resistant (MDR). The sequenced genomes carried AMR alleles against aminoglycosides (aadA, aac, aph), beta-lactams (bla-CARB, bla-PSE, bla-TEM, bla-CTX-M, bla-CMY), phenicols (floR), folate pathway inhibitors (sul, dfrA), fluoroquinolones (qnrAB, oqxAB), tetracyclines (tetABM), and macrolides: mph(A) y lnu(F). In conclusion, the beef under study works as a reservoir of SE with worrisome MDR phenotypes. The pathogen has acquired AMR genes against antibiotics used in human and veterinary medicine. The emergence of resistance to azithromycin is particularly alarming and has not been reported to date. Further studies are needed to better characterize AMR in SE populations associated with cattle.

Keywords:
Salmonella spp carne de res molida antibióticos fenotipo genotipo multirresistencia

Article Details

References

World Health Organization. WHO estimates of the global burden of foodborne diseases. Foodborne disease burden epidemiology reference group 2007-2015 (PDF). 2015. https://apps.who.int/iris/bitstream/handle/10665/199350/9789241565165_eng.pdf

Secretaría de Salud. Anuarios de morbilidad (PDF). 2021. https://epidemiologia.salud.gob.mx/anuario/2021/morbilidad/nacional/distribucion_casos_nuevos_enfermedad_fuente_notificacion.pdf

Godinez-Oviedo A, Tamplin ML, Bowman JP, Hernandez-Iturriaga M. Salmonella enterica in Mexico 2000-2017: epidemiology, antimicrobial resistance, and prevalence in food. Foodborne Pathogens and Disease. 2020;17(2):98-118. doi: 10.1089/fpd.2019.2627.

Delgado-Suárez EJ, Ortíz-López R, Gebreyes WA, Allard MW, Barona-Gomez F, Rubio-Lozano MS. Genomic surveillance links livestock production with the emergence and spread of multi-drug resistant non-typhoidal Salmonella in Mexico. Journal of Microbiology. 2019;57(4). doi: 10.1007/s12275-019-8421-3.

Ma Y, Li M, Xu X, Fu Y, Xiong Z, Zhang L, et al. High-levels of resistance to quinolone and cephalosporin antibiotics in MDR-ACSSuT Salmonella enterica serovar Enteritidis mainly isolated from patients and foods in Shanghai, China. International Journal of Food Microbiology. 2018;286:190-196. doi: 10.1016/j.ijfoodmicro.2018.09.022.

Ballesteros-Nova N, Rubio-Lozano MS, Delgado-Suárez EJ, Méndez-Medina RD, Braña-Varela D, Rodas Suárez O. Perfil de resistencia a antibióticos de serotipos Salmonella spp. aislados de carne de res molida en la Ciudad de México. Salud Pública de México. 2016;58(3):1-7. doi: 10.21149/spm.v58i3.7897.

Almeida F, Seribelli AA, Medeiros MIC, Rodrigues DDP, de MelloVarani A, Luo Y, et al. Phylogenetic and antimicrobial resistance gene analysis of Salmonella Typhimurium strains isolated in Brazil by whole genome sequencing. PLoS One. 2018;13(8):e0201882. doi: 10.1371/journal.pone.0201882.

Laufer AS, Grass J, Holt K, Whichard JM, Griffin PM, Gould LH. Outbreaks of Salmonella infections attributed to beef --United States, 1973-2011. Epidemiology and Infection. 2015;143(9):2003-2013. doi: 10.1017/S0950268814003112.

De la Garza-García JA, Rubio Lozano MS, Wacher-Rodarte MDC, Navarro Ocaña A, Hernández-Castro R, Xicohtencatl-Cortes J, et al. Frecuencia de contaminación y de serotipos de Salmonella enterica y Escherichia coli en una operación integrada de matanza y deshuese de bovinos. Revista Mexicana de Ciencias Pecuarias. 2020;11(4):971-990. doi: 10.22319/rmcp.v11i4.5111.

Realpe-Quintero M, Barba-Leon J, Perez-Montano JA, Pacheco-Gallardo C, Gonzalez-Aguilar D, Dominguez-Arias RM, et al. Genetic diversity and antimicrobial resistance of Salmonella serotypes recovered throughout the beef production chain and from patients with salmonellosis. PeerJ. 2018;6:e5482. doi: 10.7717/peerj.5482.

Cabrera-Diaz E, Barbosa-Cardenas CM, Perez-Montano JA, Gonzalez-Aguilar D, Pacheco-Gallardo C, Barba J. Occurrence, serotype diversity, and antimicrobial resistance of Salmonella in ground beef at retail stores in Jalisco state, Mexico. Journal of Food Protection. 2013;76(12):2004-2010. doi: 10.4315/0362-028X.JFP-13-109.

Delgado-Suarez EJ, Palos-Guiterrez T, Ruiz-Lopez FA, Hernandez Perez CF, Ballesteros-Nova NE, Soberanis-Ramos O, et al. Genomic surveillance of antimicrobial resistance shows cattle and poultry are a moderate source of multi-drug resistant non-typhoidal Salmonella in Mexico. PLoS One. 2021;16(5):e0243681. doi: 10.1371/journal.pone.0243681.

Aguilar-Barojas S. Fórmulas para el cálculo de la muestra en investigaciones de salud. Salud en Tabasco. 2005;11(1-2):333-338.

Instituto Nacional de Estadística y Geografía. Directorio Estadístico Nacional de Unidades Económicas. 2018. https://www.inegi.org.mx/app/descarga/?ti=6

NORMA Oficial Mexicana NOM-210-SSA1-2014. Productos y servicios. Métodos de prueba microbiológicos. Determinación de microorganismos indicadores. Determinación de microorganismos patógenos. https://dof.gob.mx/nota_detalle_popup.php?codigo=5398468

Rahn K, De Grandis SA, Clarke RC, Curtiss R, Gyles CL. Amplification of an invA gene sequence of Salmonella Typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Molecular and Cellular Probes. 1992;6:271-279. doi: 10.1016/0890-8508(92)90002-F.

Delgado Suárez EJ. Salmonella spp. detection and isolation. Protocols.io repository. 2021. doi: https://dx.doi.org/10.17504/protocols.io.bpybmpsn.

Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology. 1966;45(4):493-496.

World Health Organization. Critically important antimicrobials for human medicine, 6th Revision (PDF). Antimicrobial Resistance Division, Global Coordination and Partnership, Nutrition and Food Safety; 2019. https://www.who.int/publications/i/item/9789241515528

Clinical and Laboratory Standards Institute. CLSI M100-ED31:2021 Performance Standards for Antimicrobial Susceptibility Testing. 31st edition. 2021. http://em100.edaptivedocs.net/GetDoc.aspx?doc=CLSI%20M100%20ED31:2021&xormat=SPDF&src=BB

Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection. 2012;18(3):268-281. doi: 10.1111/j.1469-0691.2011.03570.x.

Delgado Suárez EJ. Salmonella spp. antibiotic susceptibility testing by the Kirby-Bauer disk diffusion method. Protocols.io repository. 2021. https://dx.doi.org/10.17504/protocols.io.bpypmpvn.

Yoshida CE, Kruczkiewicz P, Laing CR, Lingohr EJ, Gannon VP, Nash JH, et al. The Salmonella In Silico Typing Resource (SISTR): an open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS One. 2016;11(1):e0147101. doi: 10.1371/journal.pone.0147101.

Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina Sequence Data. Bioinformatics. 2014;30(15):2114-2120. doi: 10.1093/bioinformatics/btu170.

Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Research. 2014;42(D1):D581-D591. doi: 10.1093/nar/gkt1099.

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology. 2012;19(5):455-477. doi: 10.1089/cmb.2012.0021.

Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072-1075. doi: 10.1093/bioinformatics/btt086.

Deneke C, Brendebach H, Uelze L, Borowiak M, Malorny B, Tausch SH. Species-specific quality control, assembly and contamination detection in microbial isolate sequences with AQUAMIS. Genes (Basel). 2021;12(5). doi: 10.3390/genes12050644.

Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy I, et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrobial Agents and Chemotherapy. 2019;63(11):e00483-19. doi: 10.1128/AAC.00483-19.

Tack B, Phoba MF, Thong P, Lompo P, Hupko C, Desmet S, et al. Epidemiological cut-off value and antibiotic susceptibility test methods for azithromycin in a collection of multi-country invasive non-typhoidal Salmonella. Clinical Microbiology and Infection. 2022;28(12):1615-1623. doi: 10.1016/j.cmi.2022.06.009.

Lee S, Park N, Yun S, Hur E, Song J, Lee H, et al. Presence of plasmid-mediated quinolone resistance (PMQR) genes in non-typhoidal Salmonella strains with reduced susceptibility to fluoroquinolones isolated from human salmonellosis in Gyeonggi-do, South Korea from 2016 to 2019. Gut Pathogens. 2021;13(1):35. doi: 10.1186/s13099-021-00431-7.

Nguyen F, Starosta AL, Arenz S, Sohmen D, Donhofer A, Wilson DN. Tetracycline antibiotics and resistance mechanisms. Biological Chemistry. 2014;395(5):559-575. doi: 10.1515/hsz-2013-0292.

Escudeiro P, Pothier J, Dionisio F, Nogueira T. Antibiotic resistance gene diversity and virulence gene diversity are correlated in human gut and environmental microbiomes. mSphere. 2019;4(3):e00135-19. doi: 10.1128/mSphere.00135-19.

Abouzeed YM, Baucheron S, Cloeckaert A. ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrobial Agents and Chemotherapy. 2008;52(7):2428-2434. doi: 10.1128/AAC.00084-08.

Hooda Y, Sajib MSI, Rahman H, Luby SP, Bondy-Denomy J, Santosham M, et al. Molecular mechanism of azithromycin resistance among typhoidal Salmonella strains in Bangladesh identified through passive pediatric surveillance. PLoS Neglected Tropical Diseases. 2019;13(11):e0007868. doi: 10.1371/journal.pntd.0007868.

Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Annals of the New York Academy of Sciences. 2015;1354(1):12-31. doi: 10.1111/nyas.12830.

Quesada A, Porrero MC, Tellez S, Palomo G, Garcia M, Dominguez L. Polymorphism of genes encoding PmrAB in colistin-resistant strains of Escherichia coli and Salmonella enterica isolated from poultry and swine. Journal of Antimicrobial Chemotherapy. 2015;70(1):71-74. doi: 10.1093/jac/dku320.

Nuncio ASP, Webber B, Pottker ES, Cardoso B, Esposito F, Fontana H, et al. Genomic characterization of multidrug-resistant Salmonella Heidelberg E2 strain isolated from chicken carcass in southern Brazil. International Journal of Food Microbiology. 2022;379:109863. doi: 10.1016/j.ijfoodmicro.2022.109863.

Martinez-Chavez L, Cabrera-Diaz E, Perez-Montano JA, Garay-Martinez LE, Varela-Hernandez JJ, Castillo A, et al. Quantitative distribution of Salmonella spp. and Escherichia coli on beef carcasses and raw beef at retail establishments. International Journal of Food Microbiology. 2015;210:149-155. doi: 10.1016/j.ijfoodmicro.2015.06.016.

Palós Gutiérrez T, Rubio Lozano MS, Delgado Suárez EJ, Rosi Guzmán N, Soberanis Ramos O, Hernández Pérez CF, et al. Lymph nodes and ground beef as public health importance reservoirs of Salmonella spp. Revista Mexicana de Ciencias Pecuarias. 2020;11(3):795-810. doi: 10.22319/rmcp.v11i3.5516.

Pond A, Miller M, Echeverry A, Huerta-Leidenz N, Rubio-Lozano MS, Chávez A, et al. Salmonella and E. coli O157:H7 prevalence and generic E. coli and coliform quantitative baseline in raw pork and beef in retail channels in Mexico. Food Protection Trends. 2016;67(9):2069-2089.

Aslam M, Checkley S, Avery B, Chalmers G, Bohaychuk V, Gensler G, et al. Phenotypic and genetic characterization of antimicrobial resistance in Salmonella serovars isolated from retail meats in Alberta, Canada. Food Microbiology. 2012;32(1):110-117. doi: 10.1016/j.fm.2012.04.017.

Yin M, Yang B, Wu Y, Wang L, Wu H, Zhang T, et al. Prevalence and characterization of Salmonella enterica serovar in retail meats in market place in Uighur, Xinjiang, China. Food Control. 2016;64:165-172. doi: 10.1016/j.foodcont.2015.12.029.

Centers for Disease Control and Prevention. Outbreak of Salmonella infections linked to ground beef (HTML). 2018. https://www.cdc.gov/salmonella/newport-10-18/index.html

Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. Productos químico-farmacéuticos vigentes (CSV). Secretaría de Agricultura y Desarrollo Rural, Gobierno de México; 2022. https://datos.gob.mx/busca/dataset/productos-quimicos-farmaceuticos-vigentes

Zaidi MB, McDermott P, Fedorka-Cray P, Leon V, Canche C, Hubert S, et al. Nontyphoidal Salmonella from human clinical cases, asymptomatic children and raw retail meats in Yucatan, Mexico. Clinical Infectious Diseases. 2006;42:21-28. doi: 10.1086/498508.

Miranda JM, Mondragón AC, Martínez B, Guarddon M, Rodríguez JA. Prevalence and antimicrobial resistance patterns of Salmonella from different raw foods in Mexico. Journal of Food Protection. 2009;72(5):966-971. doi: 10.4315/0362-028X-72.5.966.

Perez-Montaño JA, González-Aguilar D, Barba J, Pacheco-Gallardo C, Campos-Bravo CA, García S, et al. Frequency and antimicrobial resistance of Salmonella serotypes on beef carcasses at small abattoirs in Jalisco state, Mexico. Journal of Food Protection. 2012;75(5):867-873. doi: 10.4315/0362-028X.JFP-11-423.

McDermott PF, Zhao S, Tate H. Antimicrobial resistance in nontyphoidal Salmonella. Microbiology Spectrum. 2018;6(4):ARBA-0014-2017.doi: 10.1128/microbiolspec.ARBA-0014-2017.

Akhtar M, Hirt H, Zurek L. Horizontal transfer of the tetracycline resistance gene tetM mediated by pCF10 among Enterococcus faecalis in the house fly (Musca domestica L.) alimentary canal. Microbial Ecology. 2009;58(3):509-518. doi: 10.1007/s00248-009-9533-9.

Yousefi-Nooraie R, Mortaz‐Hejri S, Mehrani M, Sadeghipour P. Antibiotics for treating human brucellosis. Cochrane Database of Systematic Reviews. 2012;10:CD007179. doi: 10.1002/14651858.CD007179.pub2.

Kim S, Kim SH, Chun SG, Park MS, Lim HM, Lee BK. An additional novel antimicrobial resistance gene cluster in Salmonella Genomic Island 1 of a Salmonella enterica Serovar Typhimurium DT104 human isolate. Foodborne Pathogens and Disease. 2009;6(4):471-479. doi: 10.1089/fpd.2008.0199.

Aguilar-Montes de Oca S, Talavera-Rojas M, Soriano-Vargas E, Barba-Leon J, Vazquez-Navarrete J, Acosta-Dibarrat J, et al. Phenotypic and genotypic profile of clinical and animal multidrug-resistant Salmonella enterica isolates from Mexico. Journal of Applied Microbiology. 2018;124(1):67-74. doi: 10.1111/jam.13615.

Villalpando-Guzman S, Vázquez-Quiñones CR, Natividad-Bonifacio I, Curiel-Quesada E, Quiñones-Ramírez EI, Vázquez-Salinas C. Frecuencia, susceptibilidad antimicrobiana y patrón de adherencia de Salmonella enterica aislada de carne de pollo, res y cerdo de la Ciudad de México. Revista Chilena de Infectología. 2017;34(5):458-466. doi: 10.4067/S0716-10182017000500458 .

Mora-Ochomogo M, Lohans CT. β-lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. RSC Medicinal Chemistry. 2021;12(10):1623-1639. doi: 10.1039/d1md00200g.

Qiu H, Gong J, Butaye P, Lu G, Huang K, Zhu G, et al. CRISPR/Cas9/sgRNA-mediated targeted gene modification confirms the cause-effect relationship between gyrA mutation and quinolone resistance in Escherichia coli. FEMS Microbiology Letters. 2018;365(13). doi: 10.1093/femsle/fny127.

Thong KL, Ngoi ST, Chai LC, Teh CS. Quinolone resistance mechanisms among Salmonella enterica in Malaysia. Microbial Drug Resistance. 2016;22(4):259-272. doi: 10.1089/mdr.2015.0158.

Pribul BR, Festivo ML, Rodrigues MS, Costa RG, Rodrigues EC, de Souza MM, et al. Characteristics of quinolone resistance in Salmonella spp. isolates from the food chain in Brazil. Frontiers in Microbiology. 2017;8:299. doi: 10.3389/fmicb.2017.00299.

Karp BE, Campbell D, Chen JC, Folster JP, Friedman CR. Plasmid-mediated quinolone resistance in human non-typhoidal Salmonella infections: an emerging public health problem in the United States. Zoonoses and Public Health. 2018;65(7):838-849. doi: 10.1111/zph.12507.

Beharry Z, Palzkill T. Functional analysis of active site residues of the fosfomycin resistance enzyme FosA from Pseudomonas aeruginosa. Journal of Biological Chemistry. 2005;280(18):17786-17791. doi: 10.1074/jbc.M501052200.

Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet Infectious Diseases. 2016;16(2):161-168. doi: 10.1016/S1473-3099(15)00424-7.

Castro VS, Mutz YDS, Rosario DKA, Cunha-Neto A, Figueiredo EES, Conte-Junior CA. Inactivation of multi-drug resistant non-typhoidal Salmonella and wild-type Escherichia coli STEC using organic acids: a potential alternative to the food industry. Pathogens. 2020;9(10). doi: 10.3390/pathogens9100849.

Poole K. Bacterial stress responses as determinants of antimicrobial resistance. Journal of Antimicrobial Chemotherapy. 2012;67(9):2069-2089. doi: 10.1093/jac/dks196.

Leekitcharoenphon P, Hendriksen RS, Le Hello S, Weill FX, Baggesen DL, Jun SR, et al. Global genomic epidemiology of Salmonella enterica Serovar Typhimurium DT104. Applied and Environmental Microbiology. 2016;82(8):2516-2526. doi: 10.1128/AEM.03821-15.