Phenotypic variation in American bullfrogs (<em>Lithobates catesbeianus</em>) bred under intensive systems in Mexico: A preliminary report

Main Article Content

Braulio Ayala-García
Alma Lilia Fuentes-Farías
Gabriel Gutiérrez-Ospina

Abstract

Veterinaria México OA
ISSN: 2448-6760

Cite this as:

  • Ayala-García B, Fuentes-Farías AL, Gutiérrez-Ospina G. Phenotypic variation in American bullfrogs (Lithobates catesbeianus) bred under intensive systems in Mexico: A preliminary report. Veterinaria México OA. 2020;7(1). doi:10.22201/fmvz.24486760e.2020.1.747.

Commercial bullfrog farming has increased steadily in Mexico from 1925 to satisfy both the national and international markets. However, intensive production systems are still scarce, and there is a need for information to help further advance their development. Therefore, this study aimed to characterize and compare morphometric and physiological traits of bullfrogs bred under intensive culture systems. Three-year-old breeding adults (n = 100) from five farms in three different states, and one-year old juveniles (n = 60) from two of these locations, were used in the study. The scaled mass index (SMI) was calculated by considering body weight and snout-vent length measurements. Hematocrit and white blood cell concentrations were determined in juveniles, and a leukocyte profile was established. Eight linear (based on measurements from photographs of the skull), plus one geometric, variables, were used for morphometric analyses. Results show that the SMI did not vary between localities or gender in juvenile frogs, while differences were found both between sexes (p < 0.026) and between farms (p < 0.001) in adult frogs. Hematocrit and neutrophil concentrations in juvenile individuals also differed between localities. Linear and geometric morphometric analyses in juvenile frogs showed differences between sexes (p < 0.001) and between localities (p < 0.001), the latter suggesting the existence of at least two morphotypes of this species. This study presents relevant information to help advance bullfrog farming in Mexico.

Keywords:
American bullfrog aquaculture multivariate morphometrics body condition

Article Details

References

FAO. Rana catesbeiana. Cultured Aquatic Species Information programme. FAO Fisheries and Aquaculture Department. 2005. Available form: http://www.fao.org/fishery/culturedspecies/Rana_catesbeiana/es

Lever C. Naturalized reptiles and amphibians of the world. Oxford: Oxford University Press; 2003.

Lutz CG, Avery JL. Bullfrog culture. SRAC Publication. 1999;(436).

DOF. Carta Nacional Pesquera. Diario Oficial de la Federación 2011 [reviewed Jan 25, 2019]. Available form: http://dof.gob.mx/nota_detalle.php?codigo = 5176168&fecha = 31/01/2011

Casas AG, Aguilar MX, Cruz AR. La introducción y el cultivo de la rana toro (Rana catesbeiana) ¿Un atentado a la biodiversidad de México? Cienc Ergo Sum. 2001;8(1).

CONAPESCA. Estadísticas de producción pesquera. Comisión Nacional de Acuacultura y Pesca 2018 [retrieved Feb 8, 2019]. Available from: https://www.conapesca.gob.mx/wb/cona/informacion_estadistica_por_especie_y_entidad

Lopera-Barrero N, Ribeiro R, Povh J, Mendez L, Poveda-Parra A, Digmayer M. As principais espécies produzidas no Brasil. In: Produção de organismos aquáticos: uma visão no Brasil e no mundo. Guaíba: Agrolivros; 2010. p. 143-203.

FAO Yerabook. Fishery and aquaculture statistics 2016. Rome: FAO; 2018.

Gjedrem T, Robinson N, Rye M. The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture. 2012;350(353):117-29.

Gjedrem T, Robinson N. Advances by Selective Breeding for Aquatic Species: A review. AgricSci. 2014;5(12):1152-8.

Manual de buenas prácticas de producción acuícola de rana toro. México: SAGARPA; 2016. p. 77.

Avila-Villegas H. Ficha de la especie rana toro (Lithobates catesbeianus). México: CONABIO; 2008. p. 1-9 [reviewed Jan 25, 2019]. Available from: http://www.conabio.gob.mx/invasoras/index.php/Discusi%C3%B3n:Rana_toro

Peig J, Green AJ, Ame C. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos. 2009;118(12):1883-91.

MacCracken JG, Stebbings JL. Test of a body condition index with amphibians. J Herpetol. 2012;46(3):346-50.

Vieira KS, Arzabe C, Hernández MIM, Vieira WLS. An examination of morphometric variations in a neotropical toad population (Procerato phryscristiceps, Amphibia, Anura, Cycloramphidae). PLoS One. 2008;3(12):e3934.

Rohlf FJ. The tps series of software. Hystrix Ital J Mammal. 2015;26(1):9-12.

Larson PM. Chondrocranial development in larval Rana sylvatica (Anura: Ranidae): Morphometric analysis of cranial allometry and ontogenetic shape change. J Morphol. 2002;252(2):131-44.

Larson PM. Ontogeny, phylogeny, and morphology in anuran larvae: morphometric analysis of cranial development and evolution in Rana tadpoles (Anura: Ranidae). J Morphol. 2005;264(1):34-52.

Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Res. 2011;11(2):353-7.

Lima SL, Santana CL, Agostinho CÂ, Andrade DR, Pereira HP. Estimativa do tamanho da primeira maturação sexual da rã-touro, Rana catesbeiana, no sistema anfigranja de criação intensiva. R Bras Zootec. 1998;27(3):416-20.

Boelter RA, Cechin SZ. Reproductive biology of the invasive bullfrog Lithobates catesbeianus in southern Brazil. Ann Zool Fenn. 2007;44(19):435-44.

Santana CL, Lima SL, Andrade DR. Caracterização morfológica dos estádios de desenvolvimento do aparelho reprodutor feminino da rã-touro, rana catesbeiana, no sistema anfigranja de criação intensiva. Rev Bras Zootec. 1998;27(4):642-50.

Howard RD. Sexual Dimorphism in Bullfrogs. Ecology. 1981;62(2):303-310.

Tessa G, Delforno C, Govindarajulu P, Tissot N, Miaud C, Andreone F. Age and body size in four introduced populations of the American bullfrog, Lithobatescatesbeianus (Ranidae). Ital J Zool. 2016;83(4):497-502.

Halliday T, PA V. Body Size and age in amphibians and reptiles. J Herpetol. 1988;22(3):253-65.

McGarrity ME, Johnson SA. Geographic trend in sexual size dimorphism and body size of Osteopilusseptentrionalis (Cuban treefrog): Implications for invasion of the southeastern United States. Biol Invasions. 2009;11(6):1411-20.

Cathers T, Lewbart GA, Correa M, Stevens JB. Serum chemistry and hematology values for anesthetized American bullfrogs (Rana catesbeiana). J Zoo Wildl Med. 1997;28(2):171-4.

Davis AK. Metamorphosis-related changes in leukocyte profiles of larval bullfrogs (Rana catesbeiana). Comp Clin Path. 2008;18(2):181-6.

Ruiz G, Rosenmann M, Veloso A. Valores hematológicos y distribución altitudinal de anfíbios chilenos. Arch Biol Med Exp. 1987; 84:79-84.

Djong TH, Matsui M, Kuramoto M, Belabut DM, Sen YH, Nishioka M, et al. Morphological divergence, reproductive isolating mechanism, and molecular phylogenetic relationships among Indonesia, Malaysia, and Japan populations of the Fejervarya limnocharis complex (Anura, Ranidae). Zool Sci. 2007;24(12):1197-213.

Sae‐Lim P, Gjerde B, Nielsen HM, Mulder H, Kause A. A review of genotype‐by‐environment interaction and micro‐environmental sensitivity in aquaculture species. Rev Aquac. 2016;8(4):369-93.37.

Baerwald MR, Meek MH, Stephens MR, Nagarajan RP, Goodbla AM, Tomalty KM, et al. Migration‐related phenotypic divergence is associated with epigenetic modifications in rainbow trout. Mol Ecol. 2016;25(8):1785-800.

McKinney GJ, Hale MC, Goetz G, Gribskov M, Thrower FP, Nichols KM. Ontogenetic changes in embryonic and brain gene expression in progeny produced from migratory and resident O ncorhynchus mykiss. Mol Ecol. 2015;24(8):1792-809.

Morán P, Marco-Rius F, Megías M, Covelo-Soto L, Pérez-Figueroa A. Environmental induced methylation changes associated with seawater adaptation in brown trout. Aquaculture. 2013;392:77-83.

Le Luyer J, Laporte M, Beacham TD, Kaukinen KH, Withler RE, Leong JS, et al. Parallel epigenetic modifications induced by hatchery rearing in a Pacific salmon. Proc Natl Acad Sci. 2017;114(49):12964-9.

Galis F, Wagner GP, Jockusch EL. Why is limb regeneration possible in amphibians but not in reptiles, birds, and mammals? Evol Develop. 2003;5(2):208-20.

Vera MC, Ponssa ML. Skeletogenesis in anurans: cranial and postcranial development in metamorphic and postmetamorphic stages of Leptodactylus bufonius (Anura: Leptodactylidae). Acta Zoologica. 2014;95(1):44-62.

Tejedo M, Marangoni F, Pertoldi C, Richter-Boix A, Laurila A, Orizaola G, et al. Contrasting effects of environmental factors during larval stage on morphological plasticity in post-metamorphic frogs. Climate Research. 2010;43(1-2):31-9.

Bekhet GA, Abdou HA, Dekinesh SA, Hussein HA, Sebiae SS. Biological factors controlling developmental duration, growth and metamorphosis of the larval green toad, Bufo viridis viridis. J Basic Appl Zool. 2014;67(3):67-82.

Blouin MS, Brown ST. Effects of temperature-induced variation in anuran larval growth rate on head width and leg length at metamorphosis. Oecologia. 2000;125(3):358-61.

Álvarez D, Nicieza AG. Effects of induced variation in anuran larval development on postmetamorphic energy reserves and locomotion. Oecologia. 2002;131(2):186-95.

Hammond SA, Warren RL, Vandervalk BP, Kucuk E, Khan H, Gibb EA, et al. The North American bullfrog draft genome provides insight into hormonal regulation of long noncoding RNA. Nat Commun. 2017;8(1):1433.

Moav R, Hulata G, Wohlfarth G. Genetic differences between the Chinese and European races of the common carp. Heredity. 1975;34(3):323-40.

Nielsen HM, Ødegård J, Olesen I, Gjerde B, Ardo L, Jeney G, et al. Genetic analysis of common carp (Cyprinus carpio) strains: I. Genetic parameters and heterosis for growth traits and survival. Aquaculture. 2010;304(1-4):14-21.

Gjerde B, Reddy PVG, Mahapatra KD, Jana RK, Meher PK, Sahoo M, et al. Growth and survival in two complete diallele crosses with five stocks of Rohu carp (Labeo rohita). Aquaculture. 2002;209(1-4):103-15.