High levels of dietary digestible protein transiently promote beneficial bacteria in adult dog feces

Main Article Content

Karina Elizabeth Cosío-Carpintero
Carlos Gutiérrez Olvera
Claudia Cecilia Márquez-Mota
María Esther Ortega-Cerrilla
María Guadalupe Sánchez González
Lilia Gutiérrez

Abstract

Nowadays, many commercial dog diets select the ingredients not only to meet the needs of the individual and maintain a balance between nutrition/microbiome/health; fiber and protein quality is known to be one of the most important factors in this balance. Diets high in low digestible protein tend to favor microorganisms that when fermenting amino acids generate substances that induce inflammation, while high digestible protein and fermentable fibers have been related to beneficial bacteria. The study's objective was to identify changes in the relative abundance of specific microorganisms (Clostridium perfringens, Enterococcus faecium, Lactobacillus salivarius, Bacteroides fragilis and Fusobacterium varium) by PCR (polymerase chain reaction), associated with two diets of different quality and digestibility. Twenty adult dogs were used, divided into two groups, the first one fed with a high digestibility diet (HD) (n = 10), the second one with a low digestibility diet (LD) (n = 10). After 3 days of adaptation to the diet, fecal samples were taken at days 15 and 30. The results showed that the high-quality diet promotes a transient increase (15 days) in the relative abundance of F. varium and E. faecium, as well as a persistent increase in that of L. salivarius and B. fragilis until day 30. Apparently, however, healthy adult dogs eventually balance their fecal microbiota, regardless of the dietary protein level and digestibility. Therefore, it is difficult to identify clear patterns of the ideal dietary profile in this species.

Keywords:
dog microbiota diet quality protein-digestibility

Article Details

Author Biography

Lilia Gutiérrez, Universidad Nacional Autónoma de México, Facultad de Medicina Veterinaria y Zootecnia. Departmento de Fisiología y Farmacología. Av. Universidad #3000, Coyoacán, 04510 CDMX

Famacología Veterinaria

References

Arboleda M. Estudio de la oferta y la demanda de productos de mascotas relacionados con la alimentación y los accesorios en la ciudad de Medellín para determinar oportunidades de innovación y desarrollo de nuevos productos (Tesis de maestría). Medellín, Colombia. Universidad EAFIT; 2017.

Michel KE. Unconventional diets for dogs and cats. Veterinary Clinics of North America: Small Animal Practice. 2006;36(6):1269-81. doi: 10.1016/j.cvsm.2006.08.003.

Herstad KMV, Gajardo K, Bakke AM, Moe L, Ludvigsen J, Rudi K, et al. A diet change from dry food to beef induces reversible changes on the faecal microbiota in healthy, adult client-owned dogs. BMC Vet Res. 2017;13(1):1-13. doi: 10.1186/s12917-017-1073-9.

Wernimont SM, Radosevich J, Jackson MI, Ephraim E, Badri DV, Macleay JM, et al. The effects of nutrition on the gastrointestinal microbiome of cats and dogs : impact on health and disease. Frontiers in Microbiology. 2020;11(June):1-24. doi: 10.3389/fmicb.2020.01266.

Moon CD, Young W, Maclean PH, Cookson AL, Bermingham EN. Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. Microbiology Open. 2018;7(5):1-20. doi: 10.1002/mbo3.677.

Vital M, Gao J, Rizzo M, Harrison T, Tiedje JM. Diet is a major factor governing the fecal butyrate-producing community structure across Mammalia , Aves and Reptilia. The ISME Journal. 2015;832-43. doi: 10.1038/ismej.2014.179.

Xu J, Verbrugghe A, Lourenço M, Cools A, Liu DJX, Wiele T Van De, et al. The response of canine faecal microbiota to increased dietary protein is influenced by body condition. BMC Veterinary Research. 2017;1-11. doi: 10.1186/s12917-017-1276-0.

Hooda S, Minamoto Y, Suchodolski JS, Swanson KS. Current state of knowledge : the canine gastrointestinal microbiome. Animal Health Research Reviews 2012;13(1):78-88. doi: 10.1017/S1466252312000059.

Lagkouvardos, Illias, Overmann, Jöng, Clavel T. Cultured microbes represent a substantial fraction of the human and mouse gut microbiota. Gut Microbes. 2017;8(5):493-503. doi: 10.1080/19490976.2017.1320468.

Suchodolski JS. Companion animals symposium: Microbes and gastrointestinal health of dogs and cats. J Anim Sci. 2011;89(5):1520-30. doi 10.2527/jas.2010-3377.

Vanhoutte T, Huys G, De Brandt E, Fahey GCJ, Swings J. Molecular monitoring and characterization of the faecal microbiota of healthy dogs during fructan supplementation. FEMS Microbiol Lett. 2005 Aug;249(1):65-71. doi: 10.1016/j.femsle.2005.06.003.

Sandri M, Dal Monego S, Conte G, Sgorlon S, Stefanon B. Raw meat based diet influences faecal microbiome and end products of fermentation in healthy dogs. BMC Vet Res. 2017;13(1):1-11. doi: 10.1016/j.femsle.2005.06.003.

Hang I, Rinttila T, Zentek J, Kettunen A, Alaja S, Apajalahti J, et al. Effect of high contents of dietary animal-derived protein or carbohydrates on canine faecal microbiota. BMC Veterinary Research. 2012; http://www.biomedcentral.com/1746-6148/8/90

Middelbos IS, Boler BMV, Qu A, White BA, Swanson KS, Fahey GC. Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PLoS One. 2010;5(3). doi: 10.1371/journal.pone.0009768.

Case L, Daristole L, Hayek M, Foess M. Canine and feline nutrition [internet]. 3 th. edition. Elsevier M (editor). 2011. 542 p.

Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol [internet]. 2001;56(1):2.4.1-2.4.5. doi: 10.1002/0471142727.mb0204s56.

García A. Implementación de técnicas de extracción de ADN a partir de líquido ruminal para ladetección e identificación de microorganismos mediante PCR. México: UNAM; 2019.

Green MR. Molecular cloning : a laboratory manual. 4th ed. New York: Cold Spring Harbor Laboratory Press; 2012. 2 028 p.

Daniel W. Bioestadística: base para el análisis de las ciencias de la salud. 4th. ed. Buenos Aires: Limusa-Wiley; 2010. 634 p.

Pilla R, Suchodolski JS. The role of the canine gut microbiome and metabolome in health and gastrointestinal disease. Front Vet Sci. 2020;6(January):1-12. doi: 10.3389/fvets.2019.00498.

Suchodolski JS. Assessment of the qualitative variation in bacterial microflora among compartments of the intestinal tract of dogs by use of a molecular fingerprinting technique. Am J Vet Res. 2005;66:1555-62.

Zentek J, Marquart B, Pietrzak T, Ballèvre O, Rochat F. Dietary effects on bifidobacteria and Clostridium perfringens in the canine intestinal tract. J Anim Physiol Anim Nutr (Berl). 2003;87(11-12):397-407. doi: 10.1046/j.0931-2439.2003.00451.x.

Allaway D, Haydock R, Lonsdale ZN, Deusch OD, O’Flynn C, Hughes KR. Rapid reconstitution of the fecal microbiome after extended diet-induced changes indicates a stable gut microbiome in healthy adult dogs. Appl Environ Microbiol. 2020;86(13):1-13. doi: 10.1128/AEM.00562-20.

Mori A, Goto A, Kibe R, Oda H, Kataoka Y. Comparison of the effects of four commercially available prescription diet regimens on the fecal microbiome in healthy dogs. J. Vet. Med. Sci. 2019;1783-1790. doi: 10.1292/jvms.19-0055.

Moinard A, Payen C, Ouguerram K, André A, Hernandez J, Nguyen P, et al. Effects of high-fat diet at two energetic levels on fecal microbiota, colonic barrier and, metabolic parameters in dogs. Frontiers in Veterinary Science 2020;7(September):1-15. doi: 10.3389/fvets.2020.566282.

Santaniello A, Sansone M, Fioretti A, Menna LF. Systematic review and meta-analysis of the occurrence of ESKAPE bacteria group in dogs, and the related zoonotic risk in animal-assisted therapy, and in animal-assisted activity in the health context. International Journal of Environmental Research and Public Health. Review 2020. doi: 10.3390/ijerph17093278.

Lam MMC, Seemann T, Bulach DM, Gladman SL, Chen H, Haring V, et al. Comparative analysis of the first complete Enterococcus faecium. Journal of Bacteriology. 2012;2334-41. doi: 10.1128/JB.00259-12.

Ghattargi VC, Gaikwad MA, Meti BS, Nimonkar YS, Dixit K, Prakash O, et al. Comparative genome analysis reveals key genetic factors associated with probiotic property in Enterococcus faecium strains. BMC Genomics 2018;1-16. doi: 10.1186/s12864-018-5043-9.

Zishiri O. Prevalence of virulence genes in Enterococcus species isolated from companion animals and livestock. Onderstepoort Journal of Veterinary Research 2018;1-8. doi: 10.4102/ojvr.v85i1.1583.

Jha AR, Shmalberg J, Tanprasertsuk J, Perry LA, Massey D, Honaker RW. Characterization of gut microbiomes of household pets in the United States using a direct-to-consumer approach. PLoS One. 2020;15(2):1-20. doi: 10.1371/journal.pone.0227289.

Middelbos IS, Fastinger ND, Fahey GC. Evaluation of fermentable oligosaccharides in diets fed to dogs in comparison to fiber standards. J Anim Sci. 2007;85(11):3033-3044. doi: 10.2527/jas.2007-0080.

Bermingham EN, Maclean P, Thomas DG, Cave NJ, Young W. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ. 2017;2017(3). doi: 10.7717/peerj.3019.

Jia J, Frantz N, Khoo C, Gibson GR, Rastall RA, Mccartney AL. Investigation of the faecal microbiota associated with canine chronic diarrhoea. FEMS. 2010;71:304-12. doi: 10.1111/j.1574-6941.2009.00812.x.

Deng P, Swanson KS. Gut microbiota of humans , dogs and cats : current knowledge and future opportunities and challenges. British Journal of Nutrition. 2015; doi: 10.1017/S0007114514002943.

Inness VL, Mccartney AL, Khoo C, Gross KL, Gibson GR. Molecular characterisation of the gut microflora of healthy and inflammatory bowel disease cats using fluorescence in situ hybridisation with special reference to Desulfovibrio spp. Journal of Animal Physiology and Animal Nutrition. 2007;91:48-53. doi: 10.1111/j.1439-0396.2006.00640.x.

Bermingham EN, Young W, Kittelmann S, Kerr KR, Swanson KS, Roy NC, et al. Dietary format alters fecal bacterial populations in the domestic cat (Felis catus). Microbiology Open. 2013;173-81. doi: 10.1002/mbo3.60.

Deusch O, Flynn CO, Colyer A, Morris P, Allaway D, Jones PG, et al. Deep Illumina-based shotgun sequencing reveals dietary effects on the structure and function of the fecal microbiome of growing kittens. Plos One. 2014;9(7). doi: 10.1371/journal.pone.0101021.

Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science (80). 2011;334(6052):105-8. doi: 10.1126/science.1208344.