Detecting regressive feline leukemia infections and feline immunodeficiency coinfections in cats with clinical signs and hematological alterations related to retroviral infection

Main Article Content

María Casandra Canto Valdés
http://orcid.org/0000-0003-0292-8075
Manuel Emilio Bolio González
http://orcid.org/0000-0001-8702-9399
Hugo Ramírez Álvarez
http://orcid.org/0000-0003-1682-8104
Gabriel Eduardo Acevedo Jiménez
http://orcid.org/0000-0002-2026-9918
Laura Conde Ferraez
http://orcid.org/0000-0002-8095-7106
Alberto Rosado Aguilar
http://orcid.org/0000-0002-4941-9123

Abstract

The infections caused by feline leukemia (FeLV) and feline immunodeficiency (fiv) viruses, are relevant in Feline Medicine due to the severe complications of the disease and related pathologies in domestic cats. This study describes clinical findings related to FeLV and fiv, regressive FeLV infections and identification of prevalent FeLV genotypes in domestic cats from Mérida, Yucatán, México. Hundred domestic cats with clinical manifestations of diseases associated with feline retrovirus infection in veterinary centers in Mérida, were submitted to a general physical examination, venipuncture to collect blood, and a quantitative hemogram. Detection of antigen (FeLV) and antibody (fiv) was used to estimate infection frequency. The percentage of regressive FeLV infections was determined by pcr of an env gene segment. Some FeLV amplified products were sequenced with the Sanger method and used to construct a phylogenetic tree. The predominant FeLV and fiv clinical infection findings were gingivitis, gingivostomatitis, periodontal disease and anemia. We found a 10% infection frequency for FeLV by antigen detection, and 17% for fiv by antibodies detection. pcr frequency detection for FeLV was 58%, and 52% were regressive infections. The phylogenetic analysis identified sequences associated with FeLV-A, and endogenous or recombinant FeLV that had not previously been identified in México. The frequency of infection by both retroviruses was higher in Mérida, Yucatán, than those described in previous studies. Cats with FeLV predominantly had regressive infections, but the role that endogenous or recombinant retroviruses play in disease development remains unknown.


Keywords: FeLV; FIV; PCR; Regressive infection; Antigens; Antibodies

Article Details

References

1. Ramírez H, Autran M, García MM, Carmona MA, Rodríguez C, Martínez HA. Genotyping of feline leukemia virus in Mexican housecats. Archives of Virology. 2016;161:1039-1045. doi: 10.1007/s00705-015-2740-4.
2. Beatty J. Feline immunodeficiency virus infection. In: Ettinger SJ, Feldman EC, Coté E, editors. Textbook of Veterinary Internal Medicine. St. Louis, Missouri: Elsevier; 2017. p. 2422-2423.
3. Pan M-Q, Wang J-C, Wang Y-J. The prevalence and genetic diversity of feline immunodeficiency virus and feline leukemia virus among stray cats in Harbin, China. Turkish Journal of Zoology. 2018;42(2):245-251. doi: 10.3906/ zoo-1706-3.
4. Perharić M, Starešina V, Turk N, Barbić L, Štritof Z, Hađina S, et al. The epidemiology features of retroviral infections in domestic cats from the Zagreb urban area. Veterinarski arhiv. 2018;88(3):345-354. doi: 10.24099/vet.arhiv.170406b.
5. Maclachlan NJ, Dubovi EJ. Fenner’s veterinary virology. 5th. ed. London, U.K.: Academic Press; 2017.
6. Chiu ES, Hoover EA, VandeWoude S. A Retrospective Examination of Feline Leukemia Subgroup Characterization: Viral Interference Assays to Deep Sequencing. Viruses. 2018;10(1). doi: 10.3390/v10010029. PMCID: PMC5795442.
7. Kawamura M, Watanabe S, Odahara Y, Nakagawa S, Endo Y, Tsujimoto H, et al. Genetic diversity in the feline leukemia virus gag gene. Virus Research. 2015;204:74-81. doi: 10.1016/j.virusres.2015.04.008.
8. Kawasaki J, Nishigaki K. Tracking the Continuous Evolutionary Processes of an Endogenous Retrovirus of the Domestic Cat: ERV-DC. Viruses. 2018;10(4). doi: 10.3390/v10040179. PMCID: PMC5923473.
9. Eckstrand CD, Sparger EE, Murphy BG. Central and peripheral reservoirs of feline immunodeficiency virus in cats: a review. Journal of General Virology. 2017;98:1985-1996. doi: https://doi.org/10.1099/jgv.0.000866.
10. Hartmann K, Levy JK. Feline leukemia virus infection. In: Ettinger SJ, Feldman EC, Coté E, editors. Textbook of Veterinary Internal Medicine 8th Edition. St. Louis, Missouri: Elsevier; 2017. p. 2442-2455.
11. Aiyaranoi K, Boonchalaew N, Chawnan N, Chotikul S, Kampa J. Prevalence of feline immunodeficiency virus & feline leukemia virus in clinically healthy cats in Khon Kaen province. Thai Journal of Veterinary Medicine. 2018;48(1):117-121.
12. Galdo Novo S, Bucafusco D, Diaz LM, Bratanich AC. Viral diagnostic criteria for Feline immunodeficiency virus and Feline leukemia virus infections in domestic cats from Buenos Aires, Argentina. Revista Argentina de Microbiología. 2016;48(4):293-297. doi: 10.1016/j.ram.2016.07.003.
13. Kennedy M, Little SE. Viral diseases. In: Little SE, editor. The cat clinical medicine and management. St. Louis, Missouri: Elsevier Saunders; 2012. p. 1029-1070.
14. Ortega-Pacheco A, Aguilar-Caballero AJ, Colin-Flores RF, Acosta-Viana KY, Guzman-Marin E, Jimenez-Coello M. Seroprevalence of feline leukemia virus, feline immunodeficiency virus and heartworm infection among owned cats in tropical Mexico. Journal of Feline Medicine and Surgery. 2014;16(6):460-464. doi:10.1177/1098612X13509995.
15. Kimura M. A Simple Method for Estimating Evolutionary Rates of Base Substitutions Through Comparative Studies of Nucleotide Sequences. Journal of Molecular Evolution. 1980;16:111-120.
16. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution. 2018;35(6):1547-1549. doi: 10.1093/molbev/msy096. PMCID: PMC5967553.
17. Bandecchi P, Matteucci D, Baldinotti F, Guidi G, Abramo F, Tozzini F, et al. Prevalence of feline immunodeficiency virus and other retroviral infections in sick cats in Italy. Special Issue: 10th International Feline Retrovirus Research Symposium 2010. 1992;31(3-4):337-345. doi: 10.1016/0165-2427(92)90020-q.
18. Arjona A, Escolar E, Soto I, Barquero N, Martín D, Gómez-Lucia E. Seroepidemiological survey of infection by feline leukemia virus and immunodeficiency virus in Madrid and correlation with some clinical aspects. Journal of Clinical Microbiology. 2000;38(9):3448-3449. PMCID: PMC87403.
19. Maruyama S, Kabeya H, Nakao R, Tanaka S, Sakai T, Xuan X, et al. Seroprevalence of Bartonella henselae, Toxoplasma gondii, fiv and FeLV Infections in Domestic Cats in Japan. Microbiology and Immunology. 2003;47(2):147-153. doi: 0.1111/j.1348-0421.2003.tb02798.x.
20. Ravi M, Wobeser GA, Taylor SM, Jackson ML. Naturally acquired feline immunodeficiency virus (fiv) infection in cats from western Canada: Prevalence, disease associations, and survival analysis. Canadian Veterinary Journal. 2010;51(3):271-276. PMCID: PMC2822370.
21. Muirden A. Prevalence of feline leukaemia virus and antibodies to feline immunodeficiency virus and feline coronavirus in stray cats sent to an RSPCA hospital. Veterinary Record. 2002;150(20):621-625. doi: 10.1136/vr.150.20.621.
22. Lacerda LC, Silva AN, Freitas JS, Cruz RDS, Said RA, Munhoz AD. Feline immunodeficiency virus and feline leukemia virus: frequency and associated factors in cats in northeastern Brazil. Genetics and Molecular Research. 2017;16(2). doi:10.4238/gmr16029633.
23. Gonzalez SA, Affranchino JL. Properties and Functions of Feline Immunodeficiency Virus Gag Domains in Virion Assembly and Budding. Viruses. 2018;10(5). doi: 10.3390/v10050261.
24. Azócar-Aedo L, Monti G. Risk factors for seropositivity to feline retroviruses among owned domestic cats in Valdivia, southern Chile. Current Science. 2018;114(7):1548-1553. doi: https://www.jstor.org/stable/26495512.
25. Eckstrand CD, Hillman C, Smith AL, Sparger EE, Murphy BG. Viral Reservoirs in Lymph Nodes of fiv-Infected Progressor and Long-Term Non-Progressor Cats during the Asymptomatic Phase. PLoS One. 2016;11(1):e0146285. doi: 10.1371/journal.pone.0146285.
26. Akhtardanesh B, Ziaali N, Sharifi H, Rezaei S. Feline immunodeficiency virus, feline leukemia virus and Toxoplasma gondii in stray and household cats in Kerman-Iran: seroprevalence and correlation with clinical and laboratory findings. Research in Veterinary Science. 2010;89(2):306-310. doi: 10.1016/j.rvsc.2010.03.015.
27. Costa FVAd, Valle SdF, Machado G, Corbellini LG, Coelho EM, Rosa RB, et al. Hematological findings and factors associated with feline leukemia virus (FeLV)and feline immunodeficiency virus (fiv) positivity in cats from southern Brazil. Pesquisa Veterinária Brasileira. 2017;37(12):1531-1536. doi: 10.1590/s0100-736x2017001200028.
28. Villiers E. Disorders of erythrocytes. In: Villiers E, Ristic J, editors. BSAVA Manual of Canine and Feline Clinical Pathology. 3rd. edn. ed. Aberystwyth, United Kingdom: BSAVA; 2016. p. 38-66.
29. Jhons JL. Immune-mediated and other nonneoplastic white blood cell disorders. In: Ettinger SJ, Feldman EC, Coté E, editors. Textbook of Veterinary Internal Medicine 8th Edition. St. Louis, Missouri: Elsevier; 2017. p. 2137-2150.
30. Ellis J, Bell R, Barnes DC, Miller R. Prevalence and disease associations in feline thrombocytopenia: a retrospective study of 194 cases. Journal of Small Animal Practice. 2018;59(9):531-538. doi: 10.1111/jsap.12814.
31. Meeker RB, Hudson L. Feline Immunodeficiency Virus Neuropathogenesis: A Model for HIV-Induced CNS Inflammation and Neurodegeneration. Veterinary Science. 2017;4(1). doi: 10.3390/vetsci4010014.
32. Power C. Neurologic disease in feline immunodeficiency virus infection: disease mechanisms and therapeutic interventions for NeuroAIDS. Journal of Neurovirology. 2018;24(2):220-228. doi: 10.1007/s13365-017-0593-1.
33. Liem BP, Dhand NK, Pepper AE, Barrs VR, Beatty JA. Clinical Findings and Survival in Cats Naturally Infected with Feline Immunodeficiency Virus. Journal of Veterinary Internal Medicine. 2013;27:798-805. doi: https://doi.org/10.1111/jvim.12120.
34. Radford A, Dawson S. Diagnosis of viral infections. BSAVA Manual of Canine and Feline Clinical Pathology: British Small Animal Veterinary Association; 2016. p. 533-548.
35. Helfer-Hungerbuehler AK, Cattori V, Boretti FS, Ossent P, Grest P, Reinacher M, et al. Dominance of highly divergent feline leukemia virus A progeny variants in a cat with recurrent viremia and fatal lymphoma. Retrovirology. 2010;7:14. doi:10.1186/1742-4690-7-14.
36. Hofmann-Lehmann R, Huder JB, Gruber S, Boretti F, Sigrist B, Lutz H. Feline leukaemia provirus load during the course of experimental infection and in naturally infected cats. Journal of General Virology. 2001;82:1589-1596.
37. Roca AL, Pecon-Slattery J, O’Brien SJ. Genomically Intact Endogenous Feline Leukemia Viruses of Recent Origin. Journal of Virology. 2004;78(8):4370-4375. doi: 10.1128/JVI.78.8.4370-4375.2004.
38. Stewart H, Jarrett O, Hosie MJ, Willett BJ. Are endogenous feline leukemia viruses really endogenous? Special Issue: 10th International Feline Retrovirus Research Symposium 2010. 2011;143(3):325-331. doi: 10.1016/j.vetimm.2011.06.011.
39. Takeuchi D, Nishigaki K. Discover of intact endogenous feline leukemia retrovirus. Japan: Yamaguchi University, Joint Faculty of Veterinary Medicine; 2016.
40. Liu Q, Sun D. New type I feline coronavirus (FCoV-I) and co-infection of FCoV-I with feline leukemia virus are responsible for the occurrence of feline infectious peritonitis in China. China: Heilongjiang Bayi Agricultural University; 2017.
41. Gorrell C. Determination of feline leukemia proviral sequences in naturally infected cats. Senior Honor Thesis. Michigan: Eastern Michigan University; 2016.
42. Anai Y, Ochi H, Watanabe S, Nakagawa S, Kawamura M, Gojobori T, et al. Infectious endogenous retroviruses in cats and emergence of recombinant viruses. Journal of Virology. 2012;86(16):8634-8644. doi: 10.1128/JVI.00280-12. PMC3421742.
43. Zhuo X, Feschotte C. Cross-Species Transmission and Differential Fate of an Endogenous Retrovirus in Three Mammal Lineages. PLoS Pathogens. 2015;11(11):e1005279. doi: 10.1371/journal.ppat.1005279.
44. Donahue PR, Hoover EA, Beltz GA, RiedelN, Hirsch VM, Overbaugh J, Mullins JI. Strong sequence conservation among horizontally transmissible, minimally pathogenic feline leukemia viruses. J Virol. 1988;62(3):722-731. doi: 10.1128/JVI.62.3.722-731.1988.
45. Anderson MM, Lauring AS, Robertson S, Dirks C, Overbaugh J. Feline Pit2 Functions as a Receptor for Subgroup B Feline Leukemia Viruses. J Virol. 2001;75(22):10563–10572. doi: 10.1128/JVI.75.22.10563–10572.2001.
46. Filoni C, Helfer-Hungerbuehler AK, Catao-Dias JL, Marques MC, Torres LN, Reinacher M, Hofmann-Lehmann R. Putative progressive and abortive feline leukemia virus infection outcomes in captive jaguarundis (Puma yagouaroundi). Virol J. 2017;14(1):226. doi: 10.1186/s12985-017-0889-z.
47. Chen H, Bechtel MK, Shi Y, Phipps A, Mathes LE, Hayes KA, Roy-Burman P. Pathogenicity induced by feline leukemia virus, Rickard strain, subgroup A plasmid DNA (pFRA). J Virol. 1998;72(9):7048-7056. doi: 10.1128/JVI.72.9.7048-7056.1998.
48. Elder JH, Mullins JI. Nucleotide sequence of the envelope gene of Gardner-Arnstein feline leukemia virus B reveals unique sequence homologies with a murine mink cell focus-forming virus. J Virol. 1983;46(3):871-880. doi: 10.1128/JVI.46.3.871-880.1983.
49. Helfer-Hungerbuehler AK, Spiri AM, Riond B, Grest P, Boretti FS, Hofmann-Lehmann R. No benefit of therapeutic vaccination in clinically healthy cats persistently infected with feline leukemia virus. Vaccine. 2015,33:1578–1585. http://dx.doi.org/10.1016/j.vaccine.2015.02.009
50. Shalev Z, Duffy SP, Adema KW, Prasad R, Hussain N, Willett BJ, Tailor CS. Identification of a feline leukemia virus variant that can use THTR1, FLVCR1, and FLVCR2 for infection. J Virol. 2009; 83 (13):6706-6716. doi: 10.1128/JVI.02317-08.
51. Riedel N, Hoover EA, Gasper PW, Nicolson MO, Mullins JI. Molecular analysis and pathogenesis of the feline aplastic anemia retrovirus, feline leukemia virus C-Sarma. J. Virol. 1986;60(1):242-250. doi: 10.1128/JVI.60.1.242-250.1986.
52. Nicolaisen-Strouss K, Kumar HP, Fitting T, Grant CK, Elder JH. Natural feline leukemia virus variant escapes neutralization by a monoclonal antibody via an amino acid change outside the antibody-binding epitope. J Virol. 1987;61(11):3410-3415. doi: 10.1128/JVI.61.11.3410-3415.1987.
53. Chiu ES, Kraberger S, Cunningham M, Cusack L, Roelke M, VandeWoude S. Multiple Introductions of Domestic Cat Feline Leukemia Virus in Endangered Florida Panthers. Emerg Infect Dis. 2019;25(1):92-101. doi: 10.3201/eid2501.181347
54. Watanabe S, Kawamura M, Odahara Y, Anai Y, Ochi H, Nakagawa S, Endo Y, Tsujimoto H, Nishigaki K. Phylogenetic and structural diversity in the feline leukemia virus env gene. PLoS ONE. 2013; 8(4):E61009. doi: 10.1371/journal.pone.0061009.
55. Brown MA, Cunningham MW, Roca AL, Troyer JL, Johnson WE, O’Brien SJ. Genetic characterization of feline leukemia virus from Florida panthers. Emerging Infect Dis. 2008;14(2):252-259. doi: 10.3201/eid1402.070981.

PLUMX Metrics