Effect of two animal protein-free extenders on cryopreservation of Pelibuey and Blackbelly ram semen

Main Article Content

Carlos Adelso Castellanos Zacarías
Julio Porfirio Ramón Ugalde
Henry Jesús Loeza Concha
Roberto Zamora Bustillos
Luis Leonardo Pinzón López
Guadalupe Itzel Rodríguez Gutiérrez
Álvaro Efrén Domínguez Rebolledo

Abstract

The study evaluated the effect of two animal protein-free extenders on ram semen cryopreservation of two tropical hair breeds. The ejaculates were collected from 8 rams (4 Blackbelly and 4 Pelibuey), which were mixed (pooled) by breed, diluted and cryopreserved in three different extenders: Animal protein [Tris egg yolk (Triladyl®)], and animal protein-free extenders AndroMed® (lecithin soy bean) and OPTIXcell® (liposome). Sperm analyses of total (TM) and progressive (PM) motility, viability, mitochondrial activity, acrosome integrity, and plasma membrane integrity (PMI) were carried out at 0 and 6 h after semen thawing. OPTIXcell® and Triladyl® extenders showed similar results between them and differed with AndroMed® in TM, PM, viability, and PMI (P<0.0017). In the Blackbelly breed, the TM was higher (P<0.0159) in OPTIXcell® than in AndroMed®. In the Pelibuey breed, the OPTIXcell® and Triladyl® showed similar results between them and differed with AndroMed® in TM, PM, viability, mitochondrial activity, and PMI (P<0.0140). However, Triladyl® showed a higher percentage of sperm with intact acrosome than AndroMed® (P<0.0392). In both breeds, spermatic parameters decreased progressively over the incubation time similarly in all three extenders. In conclusion, OPTIXcell® and Triladyl® proved to be the best extenders to cryopreserve Blackbelly and Pelibuey ram semen. However, OPTIXcell® is an animal protein-free extender that decreases the risk of bacterial contamination, whereas Triladyl® is composed of animal protein (egg yolk), which may impact the fertilizing capacity of sperm.

Keywords:
semen extender ram protein-free cryopreservation

Article Details

Author Biography

Álvaro Efrén Domínguez Rebolledo, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). Campo Experimental Mocochá, Yucatán, México.

Departamento: Carne de Rumiantes

Investigador Titular "C"

 

References

Comizzoli P, Mermillod P, Mauget R. Reproductive biotechnologies for endangered mammalian species. Reproduction Nutrition Development. 2000;40(5):493–504. doi: 10.1051/rnd:2000113.

Roca J, Rodríguez M, Gil M, Carvajal G, García E, Cuello C, et al. Survival and in vitro fertility of boar spermatozoa frozen in the presence of superoxide dismutase and/or catalase. Journal of Andrology. 2005;26:15–24. PMID: 15611562.

Viveiros A, Lock E, Woelders H, Komen J. Influence of cooling rates and plunging temperatures in an interrupted slow-freezing procedure for semen of the African catfish, Clarias gariepinus. Cryobiology. 2002;43(3):276–287. doi: 10.1006/cryo.2001.2362.

Crespilho AM, Sá Filho MF, Dell’Aqua JA, Nichi M, Monteiro GA, Avanzi BR, et al. Comparison of in vitro and in vivo fertilizing potential of bovine semen frozen in egg yolk or new lecithin based extenders. Livestock Science. 2012;149(1–2):1–6. doi: 10.1016/j.livsci.2012.05.011.

Huopalahti R, López-Fandiño R, Anton M, Schade R. Use of egg compounds for cryopreservation of spermatozoa. In: Bioactive Egg Compounds. Berlin, Heidelber: Springer-Verlag; 2007. 259–262 p.

Aires A, Hinsch K, Mueller F, Mueller-Schloesser F, Bogner K, Mueller-Schloesser S, et al. In vitro and in vivo comparison of egg yolk-based and soybean lecithin-based extenders for cryopreservation of bovine semen. Theriogenology. 2003;60(2):269–279. doi: 10.1016/s0093-691x(02)01369-9.

Amirat L, Anton M, Tainturier D, Chatagnon G, Battut I, Courtens JL. Modifications of bull spermatozoa induced by three extenders: Biociphos, low density lipoprotein and Triladyl, before, during and after freezing and thawing. Reproduction. 2005;129(4):535–543. doi: 10.1530/rep.1.00011.

Yildiz C, Bozkurt Y, Yavas I. An evaluation of soybean lecithin as an alternative to avian egg yolk in the cryopreservation of fish sperm. Cryobiology. 2013;67(1):91–94. doi: 10.1016/j.cryobiol.2013.05.008.

Vidal AH, Batista AM, da Silva ECB, Gomes WA, Pelinca MA, Silva SV, et al. Soybean lecithin-based extender as an alternative for goat sperm cryopreservation. Small Ruminant Research. 2013;109(1):47–51. doi: 10.1016/j.smallrumres.2012.07.022.

El-Sisy GA, El-Nattat WS, El-Sheshtawy RI, El-Maaty AM. Substitution of egg yolk with different concentrations of soybean lecithin in tris-based extender during bulls semen preservability. Asian Pacific Journal Reproduction. 2016;5(6):514–518. doi: 10.1016/j.apjr.2016.10.011.

Marco-Jiménez F, Puchades S, Mocé E, Viudes-de-Cartro MP, Vicente JS, Rodriguez M. Use of powdered egg yolk vs fresh egg yolk for the cryopreservation of ovine semen. Reproduction in Domestic Animals. 2004;39(6):438–441. doi: 10.1111/j.1439-0531.2004.00537.x.

Layek SS, Mohanty TK, Kumaresan A, Parks JE. Cryopreservation of bull semen: Evolution from egg yolk based to soybean based extenders. Animal Reproduction Science. 2016;172:1–9. doi: 10.1016/j.anireprosci.2016.04.013.

Ansari MS, Rakha BA, Andrabi SM, Akhter S. Usefulness of powdered and fresh egg yolk for cryopreservation of Zebu bull spermatozoa. Reproductive Biology. 2010;10(3):235–240. doi: 10.1016/s1642-431x(12)60043-6.

Singh AK, Singh VK, Narwade BM, Mohanty TK, Atreja SK. Comparative quality assessment of buffalo (Bubalus bubalis) semen chilled (5 °C) in egg yolk and soya milk based extenders. Reprodution in Domestic Animals. 2012;47(4):596–600. doi: 10.1111/j.1439-0531.2011.01928.x.

Pillet E, Duchamp G, Batellier F, Beaumal V, Anton M, Desherces S, et al. Egg yolk plasma can replace egg yolk in stallion freezing extenders. Theriogenology. 2011;75(1): 105–114. doi: 10.1016/j.theriogenology.2010.07.015.

Belala R, Delay J, Amirat L, Ropers MH, Guillou JL, Anton M, et al. The benefits of liposomes for chilling canine sperm for 4 days at 4 °C. Animal Reproduction Science. 2016;168:100–109. doi: 10.1016/j.anireprosci.2016.02.032.

Singh AK, Kumar A, Honparkhe M, Kaur S, Kaur H, Ghuman S, et al. Comparison of in vitro and in vivo fertilizing potential of buffalo bull semen frozen in egg yolk, soya bean lecithin and liposome based extenders. Reproduction in Domestic Animals. 2018;53(1):195–202. doi: 10.1111/rda.13092.

Ansari MS, Rakha BA, Akhter S, Ashiq M. OPTIXcell improves the postthaw quality and fertility of buffalo bull sperm. Theriogenology. 2016;85(3):528–532. doi: 10.1016/j.theriogenology.2015.09.035.

INEGI. Anuario estadístico y geográfico de Yucatán; 2017.

Kvist U, Björndahl L. Sperm concentration. In: Manual on Basic Semen Analysis. Oxford: Oxford University Press; 2002. 7-9 p.

Nagy S, Jansen J, Topper EK, Gadella BM. A triple-stain flow cytometric method to assess plasma and acrosome membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biology Reproduction. 2003;68(5):1828–1835. doi: 10.1095/biolreprod.102.011445.

Mendoza C, Carreras A, Moos J, Tesarik J. Distinction between true acrosome reaction and degenerative acrosome loss by a one-step staining method using Pisum sativum agglutinin. Journal of Reproduction and Fertility. 1992;95(3):755–763. doi: 10.1530/jrf.0.0950755.

Celeghini EC, De Arruda RP, De Andrade AF, Nascimento J, Raphael CF. Practical techniques for bovine sperm simultaneous fluorimetric assessment of plasma, acrosomal and mitochondrial membranes. Reproduction in Domestic Animals. 2007;42(5);479–488. doi: 10.1111/j.1439-0531.2006.00810.x.

Jeyendran RS, Van der Ven HH, Perez-Pelaez M, Crabo BG, Zaneveld LJ. Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. Journal of Reproduction and Fertility. 1984;70(1):219–228. doi: 10.1530/jrf.0.0700219.

Statistical Analysis System (SAS). Release 9.1 for windows. Cary, NC, USA: SAS Institute Inc; 2003.

Carrera-Chávez JM, Jiménez-Aguilar EE, Acosta-Pérez TP, Núñez-Gastélum JA, Quezada-Casasola A, Escárcega-Ávila AM, et al. Effect of Moringa oleifera seed extract on antioxidant activity and sperm characteristics in cryopreserved ram semen. Journal of Applied Animal Research. 2020;48(1):114–120. doi: 10.1080/09712119.2020.1741374.

Shehab-El-Deen M, Ali M, Al-Sharari M. Effects of extenders supplementation with gum arabic and antioxidants on ram spermatozoa quality after cryopreservation. Animals. 2023;13(1):111. doi: 10.3390/ani13010111.

Moreira SSJ, Silva AM, Pereira AG, Santos RP, Dantas MRT, Souza-Júnior JBF, et al. Effect of detergents based on sodium dodecyl sulfate on functional metrics of frozen–thawed collared peccary (Pecari tajacu) semen. Animals. 2023;13(3):451. doi: 10.3390/ani13030451.

Gutiérrez-Cepeda L, Crespo F, Blazquez JC, Serres C. Optimization of the equine-sperm freeze test in purebred Spanish horses by incorporating colloidal centrifugation. Animals. 2023;13(3):382. doi: 10.3390/ani13030382.

Galián S, Peinado B, Almela L, Poto Á, Ruiz S. Post-thaw quality of spermatozoa frozen with three different extenders in the Murciano Granadina goat breed. Animals. 2023;13(2):309. doi: 10.3390/ani13020309.

Ectors FJ, Vanderzwalmen P, Van Hoeck J, Nijs M, Verhaegen G, Delvigne A, et al. Relationship of human follicular diameter with oocyte fertilization and development after in-vitro fertilization or intracytoplasmic sperm injection. Human Reproduction. 1997;12(9):2002–2005. doi: 10.1093/humrep/12.9.2002.

Swain JE, Pool TB. ART failure: oocyte contributions to unsuccessful fertilization, Human Reproduction Update. 2008;14(5):431–446. doi: 10.1093/humupd/dmn025.

Anel L, Alvarez M, Martinez-Pastor F, Garcia-Macias V, Anel E, De Paz P. Improvement strategies in ovine artificial insemination. Reproduction in Domestic Animals. 2006;41(s2):30–42. doi: 10.1111/j.1439-0531.2006.00767.x.

Dixon AB, Knights M, Winkler JL, Marsh DJ, Pate JL, Wilson ME, et al. Patterns of late embryonic and fetal mortality and association with several factors in sheep. Journal of Animal Science. 2007;85(5):1274–1284. doi: 10.2527/jas.2006-129.

Gharibzadeh Z, Riasi A, Ostadhosseini S, Hosseini SM, Hajian M, Nasr-Esfahani MH. Effects of heat shock during the early stage of oocyte maturation on the meiotic progression, subsequent embryonic development and gene expression in ovine. Zygote. 2015;23(4):573–582. doi: 10.1017/S0967199414000203.

Abecia JA, Arrébola F, Macías A, Laviña A, González-Casquet O, Benítez F, Palacios C. Temperature and rainfall are related to fertility rate after spring artificial insemination in small ruminants. International Journal of Biometeorology. 2016;60:1603–1609. doi: 10.1007/s00484-016-1150-y.

Errandonea N, Fierro S, Viñoles C, Gil J, Banchero G, Olivera-Muzante J. Short term protein supplementation during a long interval prostaglandin-based protocol for timed AI in sheep. Theriogenology. 2018;114(1):34–39. doi: 10.1016/j.theriogenology.2018.03.021.

Gibbons AE, Fernandez J, Bruno-Galarraga MM, Spinelli MV, Cueto MI. Technical recommendations for artificial insemination in sheep. Animal Reproduction. 2019;16(4):803–809. doi: 10.21451/1984-3143-AR2018-0129.

Priskas S, Termatzidou SA, Gargani S, Arsenos G. Evaluation of factors affecting pregnancy rate after cervical insemination of dairy ewes in Greece. Journal of Veterinary Science and Medicine. 2019;7(2):1–7.

Santolaria P, Vicente-Fiel S, Palacín I, Fantova E, Blasco ME, Silvestre MA, et al. Predictive capacity of sperm quality parameters and sperm subpopulations on field fertility after artificial insemination in sheep. Animal Reproduction Science. 2015;163:82–88. doi: 10.1016/j.anireprosci.2015.10.001.

Christensen P, Boelling D, Pedersen KM. Korsgaard IR, Jensen J. Relationship between sperm viability as determined by flow cytometry and nonreturn rate of dairy bulls. Journal of Andrology. 2005;26(1):98–106. doi: 10.1002/j.1939-4640.2005.tb02878.x.

Januskauskas A, Johannisson A, Rodriguez-Martinez H. Subtle membrane changes in cryopreserved bull semen in relation with sperm viability, chromatin structure and field fertility. Theriogenology 2003;60(4):743–758. doi: 10.1016/s0093-691x(03)00050-5.

Tartaglione CM, Ritta MN. Prognostic value of spermatological parameters as predictors of in vitro fertility of frozen–thawed bull semen. Theriogenology 2004;62(7):1245–1252. doi: 10.1016/j.theriogenology.2004.01.012.

Rodríguez-Martinez H. State of art in farm animal sperm evaluation. Reproduction, Fertility and Development. 2007;19(1):91–101. doi: 10.1071/rd06104.

Christensen P, Labouriau R, Birck A, Boe-Hansen GB, Pedersen J, Borchersen S. Relationship among seminal quality measures and field fertility of young dairy bulls using low-dose inseminations. Journal of Dairy Science. 2011;9484):1744–1754. doi: 10.3168/jds.2010-3087.

Kumaresan A, Johannisson A, Al-Essawe EM, Morrell JM. Sperm viability, reactive oxygen species, and DNA fragmentation index combined can discriminate between above- and below-average fertility bulls. Journal of Dairy Science. 2017;100(7):5824–5836. doi: 10.3168/jds.2016-12484.

Samplaski MK, Dimitromanolakis A, Lo KC, Grober ED, Mullen B, Garbens A, Jarvi KA. The relationship between sperm viability and DNA fragmentation rates. Reproductive Biology and Endocrinology. 2015;14:13-42. doi: 10.1186/s12958-015-0035-y.

Van de Hoek M, Rickard JP, de Graaf SP. Motility assessment of ram spermatozoa. Biology. 2022;11(12):1715. doi: 10.3390/biology11121715.

Kjaestad H, Ropstad E, Berg KA. Evaluation of spermatological parameters used to predict the fertility of frozen bull semen. Acta Veterinaria Scandinavica. 1993;34(3):299–303. doi: 10.1186/BF03548194.

Wierzbowski S, Kareta W. An assessment of sperm motility estimation for evaluation in rams. Theriogenology. 1993;40(1):205–209. doi: 10.1016/0093-691X(93)90354-8.

Love CC. Relationship between sperm motility, morphology and the fertility of stallions. Theriogenology 2011;76(3):547–557. doi: 10.1016/j.theriogenology.2011.03.007.

Puglisi R, Pozzi A, Foglio L, Spanò M, Eleuteri P, Grollino MG, et al. The usefulness of combining traditional sperm assessments with in vitro heterospermic insemination to identify bulls of low fertility as estimated in vivo. Animal Reproduction Science. 2012;132(1-2):17–28. doi: 10.1016/j.anireprosci.2012.04.006.

David I, Kohnke P, Lagriffoul G, Praud O, Plouarboué F, Degond P, et al. Mass sperm motility is associated with fertility in sheep. Animal Reproduction Science. 2015;161:75-81. doi: 10.1016/j.anireprosci.2015.08.006.

Fernández-López P, Garriga J, Casas I, Yeste M, Bartumeus F. Predicting fertility from sperm motility landscapes. Communications Biology. 2022;5:1027. doi: 10.1038/s42003-022-03954-0.

Villani MT, Morini D, Spaggiari G, Falbo AI, Melli B, La Sala GB, et al. Are sperm parameters able to predict the success of assisted reproductive technology? A retrospective analysis of over 22,000 assisted reproductive technology cycles. Andrology. 2022;10(2):310–321. doi: 10.1111/andr.13123.

Malić Vončina S, Golob B, Ihan A, Kopitar AN, Kolbezen M, Zorn B, et al. Sperm DNA fragmentation and mitochondrial membrane potential combined are better for predicting natural conception than standard sperm parameters. Fertility and Sterility. 2016;105(3):637-644. doi: 10.1016/j.fertnstert.2015.11.037.

Ferreira JJ, Cassina A, Irigoyen P, Ford M, Pietroroia S, Peramsetty N, et al. Increased mitochondrial activity upon CatSper channel activation is required for mouse sperm capacitation. Redox Biology. 2021;48. No. 102176. doi: 10.1016/j.redox.2021.102176.

Giaccagli MM, Gómez-Elías MD, Herzfeld JD, Marín-Briggiler CI, Cuasnicú PS, Cohen DJ, et al. Capacitation-induced mitochondrial activity is required for sperm fertilizing ability in mice by modulating hyperactivation. Frontiers in Cell and Developmental Biology. 2021;9. No. 767161. doi: 10.3389/fcell.2021.767161.

Brito LFC, Barth AD, Bilodeau-Goeseels S, Panich PL,Kastelic JP. Comparison of methods to evaluate the plasmalemma of bovine sperm and their relationship with in vitro fertilization rate. Theriogenology. 2003;60(8):1539–1551. doi: 10.1016/s0093-691x(03)00174-2.

Oliveira LZ, de Arruda RP, de Andrade AFC, Celeghini ECC, dos Santos RM, Beletti ME, et al. Assessment of field fertility and several in vitro sperm characteristics following the use of different Angus sires in a timed-AI program with suckled Nelore cows. Livestock Science. 2012;146(1):38–46. doi: 10.1016/j.livsci.2012.02.018.

Liu DY, Baker HW. Calcium ionophore-induced acrosome reaction correlates with fertilization rates in vitro in patients with teratozoospermic semen. Human Reproduction. 1998;13(4):905–910. doi: 10.1093/humrep/13.4.905.

Xu F, Zhu H, Zhu W, Fan L. Human sperm acrosomal status, acrosomal responsiveness, and acrosin are predictive of the outcomes of in vitro fertilization: A prospective cohort study. Reproductive Biology. 2018;18(4):344–354. doi: 10.1016/j.repbio.2018.10.007.

Stewart JL, Shipley CF, Katich AS, Po E, Ellerbrock RE, Lima FS, et al. Cryopreservation of white-tailed deer (Odocoileus virginianus) semen using soybean, liposome and egg yolk-based extenders. Animal Reproduction Science. 2016;171:7–16. doi: 10.1016/j.anireprosci.2016.05.006.

Murphy EM, O’Meara C, Eivers B, Lonergan P, Fair S. Comparison of plant and egg yolk-based semen diluents on in vitro sperm kinematics and in vivo fertility of frozen-thawed bull semen. Animal Reproduction Science. 2018;191:70–75. doi: 10.1016/j.anireprosci.2018.02.010.

Lima-Verde IB, Johannisson A, Ntallaris T, Al-Essawe E, Al-Kass Z, Nongbua T, et al. Effect of freezing bull semen in two non-egg yolk extenders on post-thaw sperm quality. Reproduction in Domestic Animals. 2018;53(1):127–136. doi: 10.1111/rda.13080.

Kang SS, Lee MS, Kim UH, Lee SD, Yang BC, Yang BS, et al. Effect of Optixcell and Triladyl extenders on frozen-thawed sperm motilities and calving rates following artificial insemination in Hanwoo. Korean Journal Agricultural Science. 2019;46(1);195–204. doi: 10.7744/kjoas.20190009.

Abdel-Aziz SA, Saadeldin IM, Ba-Awadh H, Al-Mutary MG, Moumen AF, Alowaimer AN, et al. Efficiency of commercial egg-yolk free and egg-yolk supplemented tris-based extenders for dromedary camel semen cryopreservation. Animals. 2019;9(11):999. doi: 10.3390/ani9110999.

Ondřej Š, Jiří Š, Jan B, Pavla MP, Lucie T, Doležalová M, et al. Low density lipoprotein important player in increasing cryoprotective efficiency of soybean lecithin-based bull semen extenders. Animal Reproduction. 2019;16(2):267–276. doi: 10.21451/1984-3143-AR2018-0107.

Mehdipour M, Daghigh Kia H, Nazari M, Najafi A. Effect of lecithin nanoliposome or soybean lecithin supplemented by pomegranate extract on post-thaw flow cytometric, microscopic and oxidative parameters in ram semen. Cryobiology. 2017;78:34–40. doi: 10.1016/j.cryobiol.2017.07.005.

Luna-Orozco JR, González-Ramos MA, Calderón-Leyva G, Gaytán-Alemán LR, Arellano-Rodríguez F, Ángel-García O, et al. Comparison of different diluents based on liposomes and egg yolk for ram semen cooling and cryopreservation. Iranian Journal of Veterinary Research. 2019;20(2):126–130. PMCID: PMC6716279.

Wojtusik J, Stoops MA, Roth TL. Animal protein-free OptiXcell and shortened equilibration periods can replace egg yolk-based extender and slow cooling for rhinoceros semen cryopreservation. Cryobiology. 2019;89:21–25. doi: 10.1016/j.cryobiol.2019.06.003.

Amal AS, Arifiantini RI, Setiadi MA, Said S. Characteristics of the post-thawed Balinese bull semen extended in three different extenders and equilibration times. Journal of the Indonesian Tropical Animal Agriculture. 2019:44(2);135-145. doi: 10.14710/jitaa.44.2.135-145.

Singh A, Bhakat M, Mohanty TK, Mondal S, Yadav SK, Kumar P, et al. Effect of tris-egg yolk, soya milk and liposome based extenders on sahiwal (Bos indicus) sperm quality during pre and post cryopreservation stages. CryoLetters. 2019;40(2):94–102. PMID: 31017609.

Gomes-Alves S, Alvarez M, Nicolas M, Lopez-Urueña E, Martínez-Rodríguez C, Borragan S, et al. Use of commercial extenders and alternatives to prevent sperm agglutination for cryopreservation of brown bear semen. Theriogenology. 2014;82(3):469–474. doi: 10.1016/j.theriogenology.2014.05.015.

Fleisch A, Malama E, Witschi U, Leiding C, Siuda M, Janett F, et al. Effects of an extension of the equilibration period up to 96 hours on the characteristics of cryopreserved bull semen. Theriogenology. 2017:89;255–262. doi: 10.1016/j.theriogenology.2016.10.018.

Souza C, Brandao F, Santos J, Alfradique V, Brair V, Prellwitz L, et al. 38 Ram sperm longevity after cryopreservation in extender containing L-carnitine. Reproduction, Fertility and Development. 2019;32(2):145. doi: 10.1071/RDv32n2Ab38.

Loomis PR, Graham JK. Commercial semen freezing: individual male variation in cryosurvival and the response of stallion sperm to customized freezing protocols. Animal Reproduction Science. 2008;105(1–2):119–128. doi: 10.1016/j.anireprosci.2007.11.010.

Arav A, Pearl M, Zeron Y. Does membrane lipid profile explain chilling sensitivity and membrane lipid phase transition of spermatozoa and oocytes? CryoLetters. 2000;21(3):179–186. PMID: 12148049.

Holt WV. Fundamental aspects of sperm cryobiology: the importance of species and individual differences. Theriogenology. 2000;53(1):47–58. doi: 10.1016/S0093-691X(99)00239-3.

Waterhouse KE, Hofmo PO, Tverdal A, Miller RR. Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm. Reproduction. 2006;131(5):887–894. doi: 10.1530/rep.1.01049

Kumar P, Saini M, Kumar D, Balhara AK, Yadav SP, Singh P, et al. Liposome-based semen extender is suitable alternative to egg yolk-based extender for cryopreservation of buffalo (Bubalus bubalis) semen. Animal Reproduction Science. 2015;159:38–45. doi: 10.1016/j.anireprosci.2015.05.010.

Talini R, Kozicki LE, Gaievski FR, Polo G, Lima LG, Santiago J, et al. Bovine semen thermoresistance tests and their correlation with pregnancy rates after fixed-time artificial insemination. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 2019;71(06):1917–1925. doi: 10.1590/1678-4162-10994.

Naijian HR, Kohram H, Shahneh AZ, Sharafi M. Effects of various concentrations of BSA on microscopic and oxidative parameters of Mahabadi goat semen following the freeze–thaw process. Small Ruminant Research. 2013:113(2);371–375. doi: 10.1016/j.smallrumres.2013.03.015.

Salmin S, Ismaya I, Kustopo K, Beliarti E. The effect of semen washing and soybean lecithin level on motility and viability of ram spermatozoa stored at 5 °C. Journal of the Indonesian Tropical Animal Agriculture. 2012;37(4):244–249. doi: 10.14710/jitaa.37.4.244-249.

Asadpour R, Jafari R, Tayefi-Nasrabadi H. The effect of antioxidant supplementation in semen extenders on semen quality and lipid peroxidation of chilled bull spermatozoa. Iranian Journal of Veterinary Research. 2012;13(3):246–249. doi: 10.22099/IJVR.2012.365.

Pillet E, Labbe C, Batellier F, Duchamp G, Beaumal V, Anton M, et al. Liposomes as an alternative to egg yolk in stallion freezing extender. Theriogenology. 2012;77(2): 268–279. doi: 10.1016/j.theriogenology.2011.08.001.

Belala R, Briand-Amirat L, Vinciguerra L, Tainturier D, Kaidi R, Thorin C, et al. Effect of equilibration time on the motility and functional integrity of canine spermatozoa frozen in three different extenders. Research in Veterinary Science. 2016;106:66–73. doi: 10.1016/j.rvsc.2016.03.010.

Sieme H, Oldenhof H, Wolkers WF. Sperm membrane behaviour during cooling and cryopreservation. Reproduction in Domestic Animals. 2015;50(3):20–26. doi: 10.1111/rda.12594.