Ameliorating effect of Cynara scolymus (artichoke) against thiamethoxam-induced hepatotoxicity in poultry

Main Article Content

Amal Moktar
Magdy S. Amer
Aza E. Hassan
Ahmed Ateya
Eman Elashry

Abstract

This study investigated the effects of thiamethoxam (TMX), a neonicotinoid insecticide, on liver health in chickens and examined whether artichoke extract (ART) could offer protection. Forty-eight healthy chicks were divided into four groups: a control group given saline, a TMX group given TMX, a TMX + ART group given both TMX and ART and a protective ART + TMX group given ART first, then TMX. The results showed that artichoke extract significantly improved blood parameters and reduced liver damage markers compared to the TMX group. It also decreased oxidative stress and boosted antioxidant defenses. Gene expression analysis revealed that ART downregulated inflammatory markers in the liver. Histological examination confirmed that artichoke extract helped restore normal liver structure. Overall, artichoke extract effectively mitigated TMX-induced liver damage by reducing oxidative stress and improving biochemical and antioxidant markers.

Keywords:
Cynara scolymus, Poultry, Thiamethoxam, Oxidative stress, Hepatoprotection, Neonicotinoid toxicity, Antioxidant defense, Inflammatory modulation, Phytogenic supplementation

Article Details

References

Khaldoun Oularbi H, Richeval C, Lebaili N, Zerrouki-Daoudi N, Baha M, Djennas N, et al. Ameliorative effect of vitamin C against hepatotoxicity induced by emamectin benzoate in rats. Human & Experimental Toxicology 2017;36(7):709−717. doi: 10.1177/0960327116661022. DOI: https://doi.org/10.1177/0960327116661022

Borsuah JF, Messer TL, Snow DD, Comfort SD, Mittelstet AR. Literature review: global neonicotinoid insecticide occurrence in aquatic environments. Water. 2020;12(12):3388. doi: 10.3390/w12123388. DOI: https://doi.org/10.3390/w12123388

Costas-Ferreira C, Faro LRF. Neurotoxic effects of neonicotinoids on mammals: what is there beyond the activation of nicotinic acetylcholine receptors? —A systematic review. International Journal of Molecular Sciences. 2021;22(16):8413. doi: 10.3390/ijms22168413. DOI: https://doi.org/10.3390/ijms22168413

Habotta OA, Ateya A, Saleh RM, El‐Ashry ES. Thiamethoxam‐induced oxidative stress, lipid peroxidation, and disturbance of steroidogenic genes in male rats: palliative role of Saussurea lappa and Silybum marianum. Environmental Toxicology. 2021;36(10):2051−2061. doi: 10.1002/tox.23322. DOI: https://doi.org/10.1002/tox.23322

Zaefarian F, Abdollahi MR, Cowieson A, Ravindran V. Avian liver: the forgotten organ. Animals. 2019;9(2):63 doi: 10.3390/ani9020063. DOI: https://doi.org/10.3390/ani9020063

Manokhina AA, Dorokhov AS, Kobozeva TP, Fomina TN, Starovoitova OA. Varietal characteristics of Jerusalem artichoke as a high nutritional value crop for herbivorous animal husbandry. Applied Sciences. 2022;12(9):4507. doi: 10.3390/app12094507. DOI: https://doi.org/10.3390/app12094507

Cornescu GM, Panaite TD, Soica C, Cismileanu A, Matache CC. Jerusalem artichoke (Helianthus tuberosus L.) as a romising dietary feed ingredient for monogastric farm animals. Applied Sciences. 2023;13(23):12748. doi: 10.3390/app132312748. DOI: https://doi.org/10.3390/app132312748

Jimenez-Escrig A, Dragsted LO, Daneshvar B, Pulido R, Saura-Calixto F. In vitro antioxidant activities of edible artichoke (Cynara scolymus L.) and effect on biomarkers of antioxidants in rats. Journal of Agricultural and Food Chemistry. 2003;51(18):5540−5545 doi: 10.1021/jf030047e. DOI: https://doi.org/10.1021/jf030047e

Kaur N, Gupta AK. Applications of inulin and oligofructose in health and nutrition. Journal of Biosciences. 2002;27:703−714. doi: 10.1007/BF02708379. DOI: https://doi.org/10.1007/BF02708379

Radwan NL, Abdo ZMA, Hassan RA. Effect of feeding artichoke leaves meal on productive and reproductive performance of Mandarah hens. International Journal of Poultry Science. 2007;6(11):826−834. doi: 10.3923/ijps.2007.826.834. DOI: https://doi.org/10.3923/ijps.2007.826.834

Edenz F, Paarkhurrst R. CS influence on performance of broilers in conventional and cage rearing environments. Poultry Science. 2001;15(7):146−150.

Kleessen B, Elsayed N, Loehren U, Schroedl W, Krueger M. Jerusalem artichokes stimulate growth of broiler chickens and protect them against endotoxins and potential cecal pathogens. Journal of Food Protection. 2003;66(11):2171−2175. doi: 10.4315/0362-028X-66.11.2171. DOI: https://doi.org/10.4315/0362-028X-66.11.2171

Wang M, Simon JE, Aviles IF, He K, Zheng Q-Y, Tadmor Y. Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). Journal of Agricultural and Food Chemistry. 2003;51(3):601−608. doi: 10.1021/jf020792b. DOI: https://doi.org/10.1021/jf020792b

Abdo ZMA, Radwan NL, Selim NA. The effect of artichoke leaves meal on the utilization of dietary energy for broiler chicks. International Journal of Poultry Science. 2007;6(12):973−982. doi: 10.3923/ijps.2007.973.982. DOI: https://doi.org/10.3923/ijps.2007.973.982

Gul ST, Ahamd I, Saleemi MK, Ahmad M, Ahmad L, Khan A. Toxico-pathological effects of thiamethoxam on hemato-biochemical and productive performance of commercial laying Hens. Pakistan Veterinary Journal. 2020;40(4):449−454. doi: 10.29261/pakvetj/2020.052. DOI: https://doi.org/10.29261/pakvetj/2020.052

Mirderikvandi M, Kiani A, Khaldari M, Alirezaei M. Effects of artichoke (Cynara scolymus L.) extract on antioxidant status in chicken thigh meat. Agricultural and Food Sciences. 2016;10(1):73−81. doi: 10.22059/IJVM.2016.57054.

Coles MA, Brown DF. "Staphaurex" negative, methicillin resistant Staphylococcus aureus. Journal of Clinical Pathology. 1986;39(12):1365.doi: 10.1136/jcp.39.12.1365. DOI: https://doi.org/10.1136/jcp.39.12.1365

Onunkwor DN, Udokwu IU, Ekundayo EO, Ezenyilimba BN, Omumuabuike JN, Ezeoke FC. Serum biochemical assay of broiler chickens administered water containing various medicinal plant leaf methanol extract. Nigerian Journal of Animal Production. 2022(Mar 8);49(2):95−100. doi: 10.51791/njap.v49i2.3466. DOI: https://doi.org/10.51791/njap.v49i2.3466

Sapan CV, Lundblad RL, Price NC. Colorimetric protein assay techniques. Biotechnology and Applied Biochemistry. 1999(Apr 29);(2):99−108. doi: 10.1111/j.1470-8744.1999.tb00538.x. DOI: https://doi.org/10.1111/j.1470-8744.1999.tb00538.x

Doumas BT, Watson WA, Biggs HG. Albumin standards and the measurement of serum albumin with bromcresol green. Clinica Chimica Acta. 1971;31(1):87−96. doi: 10.1016/0009-8981(71)90365-2. DOI: https://doi.org/10.1016/0009-8981(71)90365-2

Pundir CS, Kumar P, Jaiwal R. Biosensing methods for determination of creatinine: a review. Biosensors and Bioelectronics. 2019(Feb 1);126:707−724. doi: 10.1016/j.bios.2018.11.031. DOI: https://doi.org/10.1016/j.bios.2018.11.031

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 1979;95(2):351−358.doi: 10.1016/0003-2697(79)90738-3. DOI: https://doi.org/10.1016/0003-2697(79)90738-3

Beutler E, Yeh MK. Erythrocyte glutathione reductase. Blood. 1963;21(5):573−585. doi: 10.1182/blood.V21.5.573.573. DOI: https://doi.org/10.1182/blood.V21.5.573.573

Aebi H. [13] Catalase in vitro. Methods in Enzymology 1984;105:121−126. doi: 10.1016/S0076-6879(84)05016-3. DOI: https://doi.org/10.1016/S0076-6879(84)05016-3

Weydert CJ, Cullen JJ. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nature Protocols. 2010;5:51−66. doi: 10.1038/nprot.2009.197. DOI: https://doi.org/10.1038/nprot.2009.197

El-Deep MH, Asser M, Shabaan M, Eid Y, Sayed M. Glutathione stimulates liver anti-oxidants related genes and reduces hepatic dysfunction induced by dietary mycotoxins in laying hens. Egyptian Poultry Science Journal. 2016;36(2):389−407. doi: 10.21608/epsj.2016.34561. DOI: https://doi.org/10.21608/epsj.2016.34561

Chen D, Jiang X, Hong Y, Wen Z, Wei S, Peng G, et al. Can chest CT features distinguish patients with negative from those with positive initial RT-PCR results for coronavirus disease (COVID-19). AJR American Journal Roentgenology. 2021;216(1):66−70. doi: 10.2214/AJR.20.23012. DOI: https://doi.org/10.2214/AJR.20.23012

Lu X, Whitaker B, Sakthivel SKK, Kamili S, Rose LE, Lowe L, et al. Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus. Journal of Clinical Microbiology. 2014;52(1):67−75. doi: 10.1128/jcm.02533-13. DOI: https://doi.org/10.1128/JCM.02533-13

Wang J, Zhang Y, Wang J, Liu L, Pang X, Yuan W. Development of a TaqMan-based real-time PCR assay for the specific detection of porcine circovirus 3. Journal of Virological Methods. 2017;248:177−180. doi: 10.1016/j.jviromet.2017.07.007. DOI: https://doi.org/10.1016/j.jviromet.2017.07.007

Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research. 2001;29(9):e45. doi: 10.1093/nar/29.9.e45. DOI: https://doi.org/10.1093/nar/29.9.e45

Al-Sultan SI, Gameel AA. Histopathological changes in the livers of broiler chicken supplemented with turmeric (Curcuma longa). International Journal of Poultry Science. 2004(Apr 15);3(5):333−336. doi: 10.3923/ijps.2004.333.336 DOI: https://doi.org/10.3923/ijps.2004.333.336

Hussain R, Ghaffar A, Abbas G, Jabeen G, Khan I, Abbas RZ, et al. Thiamethoxam at sublethal concentrations induces histopathological, serum biochemical alterations, and DNA damage in fish (Labeo rohita). Toxin Reviews. 2022;41(1):154−164. doi: 10.1080/15569543.2020.1855655. DOI: https://doi.org/10.1080/15569543.2020.1855655

Avcı G, Kupeli E, Eryavuz A, Yesilada E, Kucukkurt I. Antihypercholesterolaemic and antioxidant activity assessment of some plants used as remedy (sic.) in Turkish folk medicine. Journal of Ethnopharmacology. 2006;107(3):418−423. doi: 10.1016/j.jep.2006.03.032. DOI: https://doi.org/10.1016/j.jep.2006.03.032

Rezazadeh A, Ghasemnezhad A, Barani M, Telmadarrehei T. Effect of salinity on phenolic composition and antioxidant activity of artichoke (Cynara scolymus L.) leaves. Research Journal of Medicinal Plants. 2012;6(3):245−252. doi: 10.3923/rjmp.2012.245.252. DOI: https://doi.org/10.3923/rjmp.2012.245.252

Salekzamani S, Ebrahimi‐Mameghani M, Rezazadeh K. The antioxidant activity of artichoke (Cynara scolymus): a systematic review and meta‐analysis of animal studies. Phytotherapy Research. 2019;33(1):55−71. doi: 10.1002/ptr.6213. DOI: https://doi.org/10.1002/ptr.6213

Lattanzio V, Kroon PA, Linsalata V, Cardinali A. Globe artichoke: a functional food and source of nutraceutical ingredients. Journal of Functional Foods. 2009;1(2):131−144. doi: 10.1016/j.jff.2009.01.002. DOI: https://doi.org/10.1016/j.jff.2009.01.002

Ben Salem M, Ben Abdallah Kolsi R, Dhouibi R, Ksouda K, Charfi S, Yaich M, et al. Protective effects of Cynara scolymus leaves extract on metabolic disorders and oxidative stress in alloxan-diabetic rats. BMC Complementary and Alternative Medicine. 2017;17(1):328. doi: 10.1186/s12906-017-1835-8. DOI: https://doi.org/10.1186/s12906-017-1835-8

El-Boshy M, Ashshi A, Gaith M, Qusty N, Bokhary T, AlTaweel N, et al. Studies on the protective effect of the artichoke (Cynara scolymus) leaf extract against cadmium toxicity-induced oxidative stress, hepatorenal damage, and immunosuppressive and hematological disorders in rats. Environmental Science and Pollution Research. 2017;24:12372−12383. DOI: https://doi.org/10.1007/s11356-017-8876-x

Elhamalawy OH, Al-Anany FS, El Makawy AI. Thiamethoxam-induced hematological, biochemical, and genetic alterations and the ameliorated effect of Moringa oleifera in male mice. Toxicology Reports. 2022;9:94−101. doi: 10.1016/j.toxrep.2021.12.012. DOI: https://doi.org/10.1016/j.toxrep.2021.12.012

Hataba A, Keshta AT, Mead HMI, El-Shafey N. Hematological, biochemical and histological alterations induced by oral administration of Thiamethoxam and Acetamiprid in male rats. Biochemistry Letters. 2014;10(1):113−125. doi: 10.21608/blj.2014.63858. DOI: https://doi.org/10.21608/blj.2014.63858

Colak E, Ustuner MC, Tekin N, Colak E, Burukoglu D, Degirmenci I, et al. The hepatocurative effects of Cynara scolymus L. leaf extract on carbon tetrachloride-induced oxidative stress and hepatic injury in rats. SpringerPlus. 2016;5(1):1−9. doi: 10.1186/s40064-016-1894-1. DOI: https://doi.org/10.1186/s40064-016-1894-1

Heidarian E, Rafieian-Kopaei M. Protective effect of artichoke (Cynara scolymus) leaf extract against lead toxicity in rat. Pharmaceutical Biology. 2013;51(9):1104−1109.doi: 10.3109/13880209.2013.777931. DOI: https://doi.org/10.3109/13880209.2013.777931

Zaker-Esteghamati H, Seidavi A, Bouyeh M. Effect of Cynara scolymus and its derivatives on broilers: an updated review. Animal Biotechnology. 2021;32(5):656−662. doi: 10.1080/10495398.2020.1737097. DOI: https://doi.org/10.1080/10495398.2020.1737097

Gul ST, Khan A, Ahmad M, Anwar MF, Khatoon A, Saleemi MK, et al. Effect of sub-lethal doses of thiamethoxam (a neonicotinoid) on hemato-biochemical parameters in broiler chicks. Toxin Reviews. 2018;37(2):144−148. doi: 10.1080/15569543.2017.1336731. DOI: https://doi.org/10.1080/15569543.2017.1336731

Bekhaled I, Benalia A, Mehida H, Meziani S, Tarfaoui L, Djjebar AA, Mai AH, Bensaid I, Demmouche A. Evaluation of the acute toxicity of dandelion (Taraxacum officinale) roots. Journal of Drug Delivery and Therapeutics. 2020;10(3):159−163. doi: 10.22270/jddt.v10i3.4093. DOI: https://doi.org/10.22270/jddt.v10i3.4093

Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology. 2007;39(1):44−84. doi: 10.1016/j.biocel.2006.07.001. DOI: https://doi.org/10.1016/j.biocel.2006.07.001

Saad-Hussein A, Ibrahim KS, Abdalla MS, El-Mezayen HA, Osman NFA. Effects of zinc supplementation on oxidant/antioxidant and lipids status of pesticides sprayers. Journal of Complementary and Integrative Medicine. 2019;17(1):20190001. doi: 10.1515/jcim-2019-0001. DOI: https://doi.org/10.1515/jcim-2019-0001

Jameel M, Jamal K, Alam MF, Ameen F, Younus H, Siddique HR. Interaction of thiamethoxam with DNA: hazardous effect on biochemical and biological parameters of the exposed organism. Chemosphere. 2020;254:126875. doi: 10.1016/j.chemosphere.2020.126875. DOI: https://doi.org/10.1016/j.chemosphere.2020.126875

Ezeji EU, Onwurah INE. Biochemical effects of dichlorvos pesticide on the liver of poultry birds (Gallus domestica). American Journal of Biochemistry. 2017;7(2):23−26. doi: 10.5923/j.ajb.20170702.02.

Küçükgergin C, Aydın AF, Özdemirler-Erata G, Mehmetçik G, Koçak-Toker N, Uysal M. Effect of artichoke leaf extract on hepatic and cardiac oxidative stress in rats fed on high cholesterol diet. Biological Trace Element Research. 2010;135:264−274. doi: 10.1007/s12011-009-8484-9. DOI: https://doi.org/10.1007/s12011-009-8484-9

Refaie AA, Ramadan A, Sabry NM, Khalil WKB, Mossa A-TH. Synthetic insecticide fipronil induced over gene expression, DNA and liver damage in female rats: the protective role of fish oil. Egyptian Journal of Chemistry. 2021;64(5):2325−2336. doi: 10.21608/ejchem.2021.58506.3264. DOI: https://doi.org/10.21608/ejchem.2021.58506.3264

Chen Q, Zhang M, Shen S. Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke (Helianthus tuberosus L.). Acta Physiologiae Plantarum. 2011;33:273−278. doi: 10.1007/s11738-010-0543-5. DOI: https://doi.org/10.1007/s11738-010-0543-5

Duzguner V, Erdogan S. Acute oxidant and inflammatory effects of imidacloprid on the mammalian central nervous system and liver in rats. Pesticide Biochemistry and Physiology. 2010;97(1):13−18. doi: 10.1016/j.pestbp.2009.11.008. DOI: https://doi.org/10.1016/j.pestbp.2009.11.008

Laurindo LF, Santos ARdOd, Carvalho ACAd, Bechara MD, Guiguer EL, Goulart RdA, et al. Phytochemicals and regulation of NF-kB in inflammatory bowel diseases: an overview of in vitro and in vivo effects. Metabolites. 2023;13(1):96. doi: 10.3390/metabo13010096. DOI: https://doi.org/10.3390/metabo13010096

El Euony OI, Elblehi SS, Abdel-Latif HM, Abdel-Daim MMA, El-Sayed YS. Modulatory role of dietary Thymus vulgaris essential oil and Bacillus subtilis against thiamethoxam-induced hepatorenal damage, oxidative stress, and immunotoxicity in African catfish (Clarias garipenus). Environmental Science and Pollution Research. 2020;27:23108−23128. doi: 10.1007/s11356-020-08588-5. DOI: https://doi.org/10.1007/s11356-020-08588-5

El Okle OS, El Euony OI, Khafaga AF, Lebda MA. Thiamethoxam induced hepatotoxicity and pro-carcinogenicity in rabbits via motivation of oxidative stress, inflammation, and anti-apoptotic pathway. Environmental Science and Pollution Research. 2018;25:4678−4689. doi: 10.1007/s11356-017-0850-0. DOI: https://doi.org/10.1007/s11356-017-0850-0

Yang Y, Yu Q, Zhang C, Wang X, He L, Huang Y, et al. Acute thiamethoxam exposure induces hepatotoxicity and neurotoxicity in juvenile Chinese mitten crab (Eriocheir sinensis). Ecotoxicology and Environmental Safety. 2023;249:114399. doi: 10.1016/j.ecoenv.2022.114399. DOI: https://doi.org/10.1016/j.ecoenv.2022.114399

Coulon M, Schurr F, Martel A-C, Cougoule N, Bégaud A, Mangoni P, et al. Influence of chronic exposure to thiamethoxam and chronic bee paralysis virus on winter honey bees. PLoS One. 2019;14(8):e0220703. doi: 10.1371/journal.pone.0220703. DOI: https://doi.org/10.1371/journal.pone.0220703

Nie Z-W, Niu Y-J, Zhou W, Kim Y-H, Shin K-T, Cui X-S. Thiamethoxam inhibits blastocyst expansion and hatching via reactive-oxygen species–induced G2 checkpoint activation in pigs. Cellular Signalling. 2019;53:294−303. doi: 10.1016/j.cellsig.2018.08.014. DOI: https://doi.org/10.1016/j.cellsig.2018.08.014

Farag MR, Zizzadoro C, Alagawany M, Abou-Zeid SM, Mawed SA, El Kholy MS, et al. In ovo protective effects of chicoric and rosmarinic acids against Thiacloprid-induced cytotoxicity, oxidative stress, and growth retardation on newly hatched chicks. Poultry Science. 2023;102(4):102487. doi: 10.1016/j.psj.2023.102487. DOI: https://doi.org/10.1016/j.psj.2023.102487

Löhr G, Deters A, Hensel A. In vitro investigations of Cynara scolymus L. extract on cell physiology of HepG2 liver cells. Brazilian Journal of Pharmaceutical Sciences. 2009;45:201−208. doi: 10.1590/S1984-82502009000200003. DOI: https://doi.org/10.1590/S1984-82502009000200003

Seoudi DM, Saleh EM. Assessment of hepatoprotective and apoptotic efficacy of Cynara scolymus leaf extract. International Journal of Biosciences. 2018;12(1):300−314. doi: 10.12692/ijb/12.1.300-314. DOI: https://doi.org/10.12692/ijb/12.1.300-314