Effect of lipopolysaccharide on body physiological responses

Main Article Content

Shiba Yousefvand
Farshid Hamidi
Abbas Parham

Abstract

Lipopolysaccharide (LPS) is an important compound with pathogenic properties. LPS is considered a bacterial endotoxin, and the body induces widespread inflammation responses by stimulating the immune system through blood cells and synthesizing proinflammatory cytokines. After entering the circulation, these proinflammatory cytokines affect different body organs and induce systematic inflammation. Proinflammatory cytokines also enter the brain through the periventricular hypothalamus (PeVH) and by affecting microglia and astrocytes; they stimulate the brain's immune response. After the induction of systemic and central inflammation, the animal sickness behavior appears. In this review, we are going to investigate the peripheral and central effects of LPS-induced inflammation on different animal species.

Keywords:
Animal sickness behaviors, Lipopolysaccharide, Periventricular hypothalamus, Inflammation, Proinflammatory cytokines

Article Details

References

Adelantado-Renau M, Beltran-Valls MR, Moliner-Urdiales D. Inflammation and cognition in children and adolescents: a call for action. Frontiers in Pediatrics. 2020;8:583. doi: 10.3389/fped.2020.00583. DOI: https://doi.org/10.3389/fped.2020.00583

Jangra A, Sriram CS, Lahkar M. Lipopolysaccharide-induced behavioral alterations are alleviated by sodium phenylbutyrate via attenuation of oxidative stress and neuroinflammatory cascade. Inflammation. 2016;39(4):1441−1452. doi: 10.1007/s10753-016-0376-5. DOI: https://doi.org/10.1007/s10753-016-0376-5

Kelley KW, Bluthé R-M, Dantzer R, Zhou J-H, Shen W-H, Johnson RW, et al. Cytokine-induced sickness behavior. Brain, behavior, and immunity. 2003;17(1):112−118. doi: 10.1016/S0889-1591(02)00077-6. DOI: https://doi.org/10.1016/S0889-1591(02)00077-6

Lopes PC, Adelman J, Wingfield JC, Bentley GE. Social context modulates sickness behavior. Behavioral Ecology and Sociobiology. 2012;66(10):1421−1428. doi: 10.1007/s00265-012-1397-1. DOI: https://doi.org/10.1007/s00265-012-1397-1

Konsman JP, Parnet P, Dantzer R. Cytokine-induced sickness behaviour: mechanisms and implications. Trends in Neurosciences. 2002;25(3):154−159. doi: 10.1016/S0166-2236(00)02088-9. DOI: https://doi.org/10.1016/S0166-2236(00)02088-9

De Boever S, Croubels S, Meyer E, Sys S, Beyaert R, Ducatelle R, et al. Characterization of an intravenous lipopolysaccharide inflammation model in broiler chickens. Avian Pathology. 2009;38(5):403−411. doi: 10.1080/03079450903190871. DOI: https://doi.org/10.1080/03079450903190871

Jangra A, Chadha V, Kumar D, Kumar V, Arora MK. Neuroprotective and acetylcholinesterase inhibitory activity of plumbagin in ICV-LPS induced behavioral deficits in rats. Current Research in Behavioral Sciences. 2021;2:100060. doi: 10.1016/j.crbeha.2021.100060. DOI: https://doi.org/10.1016/j.crbeha.2021.100060

Dunn AJ, Swiergiel AH, de Beaurepaire R. Cytokines as mediators of depression: what can we learn from animal studies? Neuroscience & Biobehavioral Reviews. 2005;29(4−5):891−909. doi: 10.1016/j.neubiorev.2005.03.023. DOI: https://doi.org/10.1016/j.neubiorev.2005.03.023

Lawson MA, Parrott JM, McCusker RH, Dantzer R, Kelley KW, O’Connor JC. Intracerebroventricular administration of lipopolysaccharide induces indoleamine-2, 3-dioxygenase-dependent depression-like behaviors. Journal of Neuroinflammation. 2013;10(1):1−9. doi: 10.1186/1742-2094-10-87. DOI: https://doi.org/10.1186/1742-2094-10-87

Ifuku M, Hossain SM, Noda M, Katafuchi T. Induction of interleukin‐1β by activated microglia is a prerequisite for immunologically induced fatigue. European Journal of Neuroscience. 2014;40(8):3253−3263. doi: 10.1111/ejn.12668. DOI: https://doi.org/10.1111/ejn.12668

Beheshti F, Hosseini M, Hashemzehi M, Soukhtanloo M, Asghari A. The effects of PPAR-γ agonist pioglitazone on anxiety and depression-like behaviors in lipopolysaccharide injected rats. Toxin Reviews. 2021;40(4):1223−1232. doi: 10.1080/15569543.2019.1673425. DOI: https://doi.org/10.1080/15569543.2019.1673425

Meyer JH. Neurochemical imaging and depressive behaviours. In: Cowen PJ, Sharp T, Lau JYF, editors. Behavioral neurobiology of depression and its treatment. Current Topics in Behavioral Neurosciences. Vol. 14. Berlin: Springer; 2013. p. 101-134. DOI: https://doi.org/10.1007/7854_2012_219

Harris GC, Aston-Jones G. Arousal and reward: a dichotomy in orexin function. Trends in Neurosciences. 2006;29(10):571−577. doi: 10.1016/j.tins.2006.08.002. DOI: https://doi.org/10.1016/j.tins.2006.08.002

Langhans W. Anorexia of infection: current prospects. Nutrition. 2000;16(10):996−1005. doi: 10.1016/S0899-9007(00)00421-4. DOI: https://doi.org/10.1016/S0899-9007(00)00421-4

Gregory NG. Physiology and behaviour of animal suffering. Lowa, USA: John Wiley & Sons; 2004. pp. 185−190. DOI: https://doi.org/10.1002/9780470752494

Kent S, Kelley KW, Dantzer R. Effects of lipopolysaccharide on food-motivated behavior in the rat are not blocked by an interleukin-1 receptor antagonist. Neuroscience Letters. 1992;145(1):83−86. doi: 10.1016/0304-3940(92)90209-P. DOI: https://doi.org/10.1016/0304-3940(92)90209-P

Schrott LM, Getty ME, Wacnik PW, Sparber SB. Open-field and LPS-induced sickness behavior in young chickens: effects of embryonic cocaine and/or ritanserin. Pharmacology Biochemistry and Behavior. 1998;61(1):9−17. doi: 10.1016/S0091-3057(98)00013-6. DOI: https://doi.org/10.1016/S0091-3057(98)00013-6

Hua J, Qiu DK, Li JQ, Li EL, Chen XY, Peng YS. Expression of Toll‐like receptor 4 in rat liver during the course of carbon tetrachloride‐induced liver injury. Journal of gastroenterology and hepatology. 2007;22(6):862−869. doi: 10.1111/j.1440-1746.2007.04896.x. DOI: https://doi.org/10.1111/j.1440-1746.2007.04896.x

Zhang Y, Guo F, Ni Y, Zhao R. LPS-induced inflammation in the chicken is associated with CCAAT/enhancer binding protein beta-mediated fat mass and obesity associated gene down-regulation in the liver but not hypothalamus. BMC Veterinary Research. 2013;9(1):1–10. doi: 10.1186/1746-6148-9-257. DOI: https://doi.org/10.1186/1746-6148-9-257

Bode JG, Albrecht U, Häussinger D, Heinrich PC, Schaper F. Hepatic acute phase proteins–regulation by IL-6-and IL-1-type cytokines involving STAT3 and its crosstalk with NF-κB-dependent signaling. European Journal of Cell Biology. 2012;91(6–7):496−505. doi: 10.1016/j.ejcb.2011.09.008. DOI: https://doi.org/10.1016/j.ejcb.2011.09.008

Kerr D, Burke N, Ford GK, Connor T, Harhen B, Egan L, et al. Pharmacological inhibition of endocannabinoid degradation modulates the expression of inflammatory mediators in the hypothalamus following an immunological stressor. Neuroscience. 2012;204:53−63. doi: 10.1016/j.neuroscience.2011.09.032. DOI: https://doi.org/10.1016/j.neuroscience.2011.09.032

Skelly DT, Hennessy E, Dansereau M-A, Cunningham C. A systematic analysis of the peripheral and CNS effects of systemic LPS, IL-1β, TNF-α and IL-6 challenges in C57BL/6 mice. PloS One. 2013;8(7):e69123. doi: 10.1371/journal.pone.0069123. DOI: https://doi.org/10.1371/journal.pone.0069123

Koutsos EA, Klasing KC. The acute phase response in Japanese quail (Coturnix coturnix japonica). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2001;128(2):255−263. doi: 10.1016/S1532-0456(00)00199-X. DOI: https://doi.org/10.1016/S1532-0456(00)00199-X

Xie H, Rath N, Huff G, Huff W, Balog J. Effects of Salmonella typhimurium lipopolysaccharide on broiler chickens. Poultry Science. 2000;79(1):33−40. doi: 10.1093/ps/79.1.33. DOI: https://doi.org/10.1093/ps/79.1.33

Tyagi E, Agrawal R, Nath C, Shukla R. Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by LPS in rat brain. European Journal of Pharmacology. 2010;640(1–3):206−210. doi: 10.1016/j.ejphar.2010.04.041. DOI: https://doi.org/10.1016/j.ejphar.2010.04.041

Inui A. Cytokines and sickness behavior: implications from knockout animal models. Trends in Immunology. 2001;22(9):469−473. doi: 10.1016/S1471-4906(01)01981-0. DOI: https://doi.org/10.1016/S1471-4906(01)01981-0

Dwars RM, Matthijs MG, Daemen AJ, van Eck JH, Vervelde L, Landman WJ. Progression of lesions in the respiratory tract of broilers after single infection with Escherichia coli compared to superinfection with E. coli after infection with infectious bronchitis virus. Veterinary Immunology and Immunopathology. 2009;127(1−2):65−76. doi: 10.1016/j.vetimm.2008.09.019. DOI: https://doi.org/10.1016/j.vetimm.2008.09.019

Asarian L, Langhans W. A new look on brain mechanisms of acute illness anorexia. Physiology & Behavior. 2010;100(5):464−471. doi: 10.1016/j.physbeh.2010.04.009. DOI: https://doi.org/10.1016/j.physbeh.2010.04.009

Brooks D, Barr LC, Wiscombe S, McAuley DF, Simpson AJ, Rostron AJ. Human lipopolysaccharide models provide mechanistic and therapeutic insights into systemic and pulmonary inflammation. European Respiratory Journal. 2020;56(1). doi: 10.1183/13993003.01298-2019. DOI: https://doi.org/10.1183/13993003.01298-2019

Doyle SL, O’Neill LA. Toll-like receptors: from the discovery of NFκB to new insights into transcriptional regulations in innate immunity. Biochemical Pharmacology. 2006;72(9):1102−1113. doi: 10.1016/j.bcp.2006.07.010. DOI: https://doi.org/10.1016/j.bcp.2006.07.010

Veit C, Janczak AM, Ranheim B, Vas J, Valros A, Sandercock DA, et al. The effect of LPS and ketoprofen on cytokines, brain monoamines, and social behavior in group-housed pigs. Frontiers in Veterinary Science. 2021;7:617634. doi: 10.3389/fvets.2020.617634. DOI: https://doi.org/10.3389/fvets.2020.617634

Garat C, Arend WP. Intracellular IL-1Ra type 1 inhibits IL-1-induced IL-6 and IL-8 production in Caco-2 intestinal epithelial cells through inhibition of p38 mitogen-activated protein kinase and NF-κB pathways. Cytokine. 2003;23(1−2):31−40. doi: 10.1016/S1043-4666(03)00182-0. DOI: https://doi.org/10.1016/S1043-4666(03)00182-0

Wang P, Yang F-J, Du H, Guan Y-F, Xu T-Y, Xu X-W, et al. Involvement of leptin receptor long isoform (LepRb)-STAT3 signaling pathway in brain fat mass-and obesity-associated (FTO) downregulation during energy restriction. Molecular Medicine. 2011;17(5):523−532. doi: 10.2119/molmed.2010.000134. DOI: https://doi.org/10.2119/molmed.2010.000134

Bassi GS, Kanashiro A, Santin FM, de Souza GE, Nobre MJ, Coimbra NC. Lipopolysaccharide‐induced sickness behaviour evaluated in different models of anxiety and innate fear in rats. Basic & Clinical Pharmacology & Toxicology. 2012;110(4):359−369. doi: 10.1111/j.1742-7843.2011.00824.x. DOI: https://doi.org/10.1111/j.1742-7843.2011.00824.x

Ge L, Liu L, Liu H, Liu S, Xue H, Wang X, et al. Resveratrol abrogates lipopolysaccharide-induced depressive-like behavior, neuroinflammatory response, and CREB/BDNF signaling in mice. European Journal of Pharmacology. 2015;768:49−57. doi: 10.1016/j.ejphar.2015.10.026. DOI: https://doi.org/10.1016/j.ejphar.2015.10.026

Li Z, Zhao L, Chen J, Liu C, Li S, Hua M, et al. Ginsenoside Rk1 alleviates LPS-induced depression-like behavior in mice by promoting BDNF and suppressing the neuroinflammatory response. Biochemical and Biophysical Research Communications. 2020;530(4):658−664. doi: 10.1016/j.bbrc.2020.07.098. DOI: https://doi.org/10.1016/j.bbrc.2020.07.098

Tufvesson-Alm M, Imbeault S, Liu X-C, Zheng Y, Faka A, Choi D-S, et al. Repeated administration of LPS exaggerates amphetamine-induced locomotor response and causes learning deficits in mice. Journal of Neuroimmunology. 2020(Dec);349:577401. doi: 10.1016/j.jneuroim.2020.577401. DOI: https://doi.org/10.1016/j.jneuroim.2020.577401

Zhang L, Previn R, Lu L, Liao R-F, Jin Y, Wang R-K. Crocin, a natural product attenuates lipopolysaccharide-induced anxiety and depressive-like behaviors through suppressing NF-kB and NLRP3 signaling pathway. Brain Research Bulletin. 2018;142:352−359. doi: 10.1016/j.brainresbull.2018.08.021. DOI: https://doi.org/10.1016/j.brainresbull.2018.08.021

Kalyan M, Tousif AH, Sonali S, Vichitra C, Sunanda T, Praveenraj SS, et al. Role of endogenous lipopolysaccharides in neurological disorders. Cells. 2022;11(24):4038. doi: 10.3390/cells11244038. DOI: https://doi.org/10.3390/cells11244038

McElroy PL, Wei P, Buck K, Sinclair AM, Eschenberg M, Sasu B, et al. Romiplostim promotes platelet recovery in a mouse model of multicycle chemotherapy-induced thrombocytopenia. Experimental Hematology. 2015;43(6):479−487. doi: 10.1016/j.exphem.2015.02.004. DOI: https://doi.org/10.1016/j.exphem.2015.02.004

Cheng HW, Freire R, Pajor E. Endotoxin stress responses in chickens from different genetic lines. 1. Sickness, behavioral, and physical responses. Poultry Science. 2004;83(5):707−715. doi: 10.1093/ps/83.5.707. DOI: https://doi.org/10.1093/ps/83.5.707

Scammell TE, Elmquist JK, Saper CB. Inhibition of nitric oxide synthase produces hypothermia and depresses lipopolysaccharide fever. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 1996;271(2):R333–R8. doi: 10.1152/ajpregu.1996.271.2.R333. DOI: https://doi.org/10.1152/ajpregu.1996.271.2.R333

Zendehdel M, Baghbanzadeh A, Yeganeh B, Hassanpour S. The role of cyclooxygenase inhibitors in lipopolysaccharide-induced hypophagia in chicken. Czech Journal of Animal Science. 2015;60:342−350. doi: 10.17221/8403-CJAS. DOI: https://doi.org/10.17221/8403-CJAS

Abdo Qaid EY, Abdullah Z, Zakaria R, Long I. Minocycline attenuates lipopolysaccharide-induced locomotor deficit and anxiety-like behavior and related expression of the BDNF/CREB protein in the rat medial prefrontal cortex (mPFC). International Journal of Molecular Sciences. 2022;23(21):13474. doi: 10.3390/ijms232113474. DOI: https://doi.org/10.3390/ijms232113474

Yeh C-H, Hsieh L-P, Lin M-C, Wei T-S, Lin H-C, Chang C-C, et al. Dexmedetomidine reduces lipopolysaccharide induced neuroinflammation, sickness behavior, and anhedonia. PLoS One. 2018;13(1):e0191070. doi: 10.1371/journal.pone.0191070. DOI: https://doi.org/10.1371/journal.pone.0191070

Tyagi E, Agrawal R, Nath C, Shukla R. Influence of LPS-induced neuroinflammation on acetylcholinesterase activity in rat brain. Journal of Neuroimmunology. 2008;205(1−2):51−56. doi: 10.1016/j.jneuroim.2008.08.015. DOI: https://doi.org/10.1016/j.jneuroim.2008.08.015

Savignac HM, Couch Y, Stratford M, Bannerman DM, Tzortzis G, Anthony DC, et al. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice. Brain, Behavior, and Immunity. 2016;52:120−131. doi: 10.1016/j.bbi.2015.10.007. DOI: https://doi.org/10.1016/j.bbi.2015.10.007

Yousefvand S, Hamidi F. Role of paraventricular nucleus in regulation of feeding behaviour and the design of intranuclear neuronal pathway communications. International Journal of Peptide Research and Therapeutics. 2020;26(3):1231−1242. doi: 10.1007/s10989-019-09928-x. DOI: https://doi.org/10.1007/s10989-019-09928-x

Yousefvand S, Hamidi F. The role of ventromedial hypothalamus receptors in the central regulation of food intake. International Journal of Peptide Research and Therapeutics. 2021;27(1):689−702. doi: 10.1007/s10989-020-10120-9. DOI: https://doi.org/10.1007/s10989-020-10120-9

Yousefvand S, Hamidi F. Role of lateral hypothalamus area in the central regulation of feeding. International Journal of Peptide Research and Therapeutics. 2022;28(3):1−9. doi: 10.1007/s10989-022-10391-4. DOI: https://doi.org/10.1007/s10989-022-10391-4

Yousefvand S, Hamidi F, Zendehdel M, Parham A. Effects of insulin and somatostatin on water intake in neonatal chickens. Iranian Journal of Physiology and Pharmacology. 2018;2(3):165–158.

Yousefvand S, Hamidi F, Zendehdel M, Parham A. Hypophagic effects of insulin are mediated via NPY1/NPY2 receptors in broiler cockerels. Canadian Journal of Physiology and Pharmacology. 2018;96(12):1301−1307. doi: 10.1139/cjpp-2018-0470. DOI: https://doi.org/10.1139/cjpp-2018-0470

Yousefvand S, Hamidi F, Zendehdel M, Parham A. Interaction of neuropeptide Y receptors (NPY1, NPY2 and NPY5) with somatostatin on somatostatin-induced feeding behaviour in neonatal chicken. British Poultry Science. 2019;60(1):71−78. doi: 10.1080/00071668.2018.1547359. DOI: https://doi.org/10.1080/00071668.2018.1547359

Yousefvand S, Hamidi F, Zendehdel M, Parham A. Investigating the role of NPY receptors on water intake in neonatal broiler chicken. Veterinary Researches & Biological Products. 2020;33(3):101−107.

Yousefvand S, Hamidi F, Zendehdel M, Parham A. Survey the effect of insulin on modulating feed intake via NPY receptors in 5-day-old chickens. International Journal of Peptide Research and Therapeutics. 2020;26(1):467−476. doi: 10.1007/s10989-019-09852-0. DOI: https://doi.org/10.1007/s10989-019-09852-0

Volkoff H, Peter RE. Effects of lipopolysaccharide treatment on feeding of goldfish: role of appetite-regulating peptides. Brain Research. 2004;998(2):139−147. doi: 10.1016/j.brainres.2003.11.011. DOI: https://doi.org/10.1016/j.brainres.2003.11.011

Langhans W. Anorexia during disease. In: PJ Cowen, T Sharp, JY Lau, editors. Handbook of Behavioral Neurobiology 14: Neurobiology of Food and Fluid Intake. 2nd edition. US: Springer; 2004. pp. 349−481. DOI: https://doi.org/10.1007/0-306-48643-1_13

Turrin NP, Gayle D, Ilyin SE, Flynn MC, Langhans W, Schwartz GJ, et al. Proinflammatory and anti-inflammatory cytokine mRNA induction in the periphery and brain following intraperitoneal administration of bacterial lipopolysaccharide. Brain Research Bulletin. 2001;54(4):443−453. doi: 10.1016/S0361-9230(01)00445-2. DOI: https://doi.org/10.1016/S0361-9230(01)00445-2

Banks WA. Anorectic effects of circulating cytokines: role of the vascular blood-brain barrier. Nutrition. 2001;17(5):434−437. doi: 10.1016/S0899-9007(01)00507-X. DOI: https://doi.org/10.1016/S0899-9007(01)00507-X

Abrehdari Z, Zendehdel M, Safarpour E, Allahdini P. The effects of coadministration of ghrelin agonist (GHRP-2) and GH on TNF-α, IL-6, and iNOS genes expression induced by LPS in mouse liver. Comparative Clinical Pathology. 2014;23(4):835−840. doi: 10.1007/s00580-013-1698-4. DOI: https://doi.org/10.1007/s00580-013-1698-4

Plata-Salamán CR. Anorexia during acute and chronic disease. Nutrition. 1996;12(2):69−78. doi: 10.1016/S0899-9007(96)90702-9. DOI: https://doi.org/10.1016/S0899-9007(96)90702-9

Hollis JH, Lemus M, Evetts MJ, Oldfield BJ. Central interleukin-10 attenuates lipopolysaccharide-induced changes in food intake, energy expenditure and hypothalamic Fos expression. Neuropharmacology. 2010;58(4–5):730−738. doi: 10.1016/j.neuropharm.2009.12.016. DOI: https://doi.org/10.1016/j.neuropharm.2009.12.016

Nadjar A, Sauvant J, Combe C, Parnet P, Konsman JP. Brain cyclooxygenase-2 mediates interleukin-1-induced cellular activation in preoptic and arcuate hypothalamus, but not sickness symptoms. Neurobiology of Disease. 2010;39(3):393−401. doi: 10.1016/j.nbd.2010.05.005. DOI: https://doi.org/10.1016/j.nbd.2010.05.005

Zendehdel M, Taati M, Jonaidi H, Amini E. The role of central 5-HT2C and NMDA receptors on LPS-induced feeding behavior in chickens. The Journal of Physiological Sciences. 2012;62(5):413−419. doi: 10.1007/s12576-012-0218-7. DOI: https://doi.org/10.1007/s12576-012-0218-7

Singh A, Jiang Y. How does peripheral lipopolysaccharide induce gene expression in the brain of rats? Toxicology. 2004;201(1−3):197−207. doi: 10.1016/j.tox.2004.04.015. DOI: https://doi.org/10.1016/j.tox.2004.04.015

Scarlett JM, Jobst EE, Enriori PJ, Bowe DD, Batra AK, Grant WF, et al. Regulation of central melanocortin signaling by interleukin-1β. Endocrinology. 2007;148(9):4217−4225. doi: 10.1210/en.2007-0017. DOI: https://doi.org/10.1210/en.2007-0017

Yousefvand SH, Hamidi F. The Role of MC3 and MC4 Receptors in Regulation of Food and Water Intake in Broiler Chicks. Journal of Veterinary Research. 2022; 76(4):459−466. doi: 10.22059/JVR.2021.285656.2949.

Marks DL, Ling N, Cone RD. Role of the central melanocortin system in cachexia. Cancer Research. 2001;61(4):1432−1438.

Denbow DM, Snapir N, Furuse M. Inhibition of food intake by CRF in chickens. Physiology & Behavior. 1999;66(4):645−649. doi: 10.1016/S0031-9384(98)00340-0. DOI: https://doi.org/10.1016/S0031-9384(98)00340-0

Riediger T, Giannini P, Erguven E, Lutz T. Nitric oxide directly inhibits ghrelin-activated neurons of the arcuate nucleus. Brain Research. 2006;1125(1):37−45. doi: 10.1016/j.brainres.2006.09.049. DOI: https://doi.org/10.1016/j.brainres.2006.09.049

Kim KK, Jin SH, Lee BJ. Herpes virus entry mediator signaling in the brain is imperative in acute inflammation-induced anorexia and body weight loss. Endocrinology and Metabolism. 2013;28(3):214−220. doi: 10.3803/EnM.2013.28.3.214. DOI: https://doi.org/10.3803/EnM.2013.28.3.214

Gregory N, Payne S, Devine C, Cook C. Effect of lipopolysaccharide on sickness behaviour in hens kept in cage and free range environments. Research in Veterinary Science. 2009;87(1):167−170. doi: 10.1016/j.rvsc.2009.01.003. DOI: https://doi.org/10.1016/j.rvsc.2009.01.003

Doursout M-F, Oguchi T, Fischer UM, Liang Y, Chelly B, Hartley CJ, et al. Distribution of NOS isoforms in a porcine endotoxin shock model. Shock. 2008;29(6):692−702. doi: 10.1097/SHK.0b013e3181598b77. DOI: https://doi.org/10.1097/SHK.0b013e3181598b77

Elmquist JK, Scammell TE, Jacobson CD, Saper CB. Distribution of Fos‐like immunoreactivity in the rat brain following intravenous lipopolysaccharide administration. Journal of Comparative Neurology. 1996;371(1):85−103. doi: 10.1002/(SICI)1096-9861(19960715)371:1<85::AID-CNE5>3.0.CO;2-H. DOI: https://doi.org/10.1002/(SICI)1096-9861(19960715)371:1<85::AID-CNE5>3.0.CO;2-H

Netea MG, Kullberg BJ, Van der Meer JW. Circulating cytokines as mediators of fever. Clinical Infectious Diseases. 2000;31(Suppl 5):S178−S84. doi: 10.1086/317513. DOI: https://doi.org/10.1086/317513

De Boever S, Beyaert R, Vandemaele F, Baert K, Duchateau L, Goddeeris B, et al. The influence of age and repeated lipopolysaccharide administration on body temperature and the concentration of interleukin-6 and IgM antibodies against lipopolysaccharide in broiler chickens. Avian Pathology. 2008;37(1):39−44. doi: 10.1080/03079450701784875. DOI: https://doi.org/10.1080/03079450701784875

Grossberg AJ, Zhu X, Leinninger GM, Levasseur PR, Braun TP, Myers MG, et al. Inflammation-induced lethargy is mediated by suppression of orexin neuron activity. Journal of Neuroscience. 2011;31(31):11376−11386. doi: 10.1523/JNEUROSCI.2311-11.2011. DOI: https://doi.org/10.1523/JNEUROSCI.2311-11.2011

Almeida MC, Steiner AA, Branco LG, Romanovsky AA. Cold‐seeking behavior as a thermoregulatory strategy in systemic inflammation. European Journal of Neuroscience. 2006;23(12):3359−3367. doi: 10.1111/j.1460-9568.2006.04854.x. DOI: https://doi.org/10.1111/j.1460-9568.2006.04854.x

Bowen O, Erf G, Chapman M, Wideman Jr R. Plasma nitric oxide concentrations in broilers after intravenous injections of lipopolysaccharide or microparticles. Poultry Science. 2007;86(12):2550−2554. doi: 10.3382/ps.2007-00288. DOI: https://doi.org/10.3382/ps.2007-00288

Saia RS, Anselmo-Franci JA, Carnio EC. Hypothermia during endotoxemic shock in female mice lacking inducible nitric oxide synthase. Shock. 2008;29(1):119−126. doi: 10.1097/shk.0b013e31805cdc96. DOI: https://doi.org/10.1097/shk.0b013e31805cdc96

Mayr FB, Firbas C, Leitner JM, Spiel AO, Reiter RA, Beyer D, et al. Effects of the pan-selectin antagonist bimosiamose (TBC1269) in experimental human endotoxemia. Shock. 2008;29(4):475−482. doi: 10.1097/SHK.0b013e318142c4e8. DOI: https://doi.org/10.1097/SHK.0b013e318142c4e8

Walther A, Weihrauch M, Schmidt W, Gebhard MM, Martin E, Schmidt H. Leukocyte-independent plasma extravasation during endotoxemia. Critical Care Medicine. 2000;28(8):2943−2948. doi: 10.1097/00003246-200008000-00043. DOI: https://doi.org/10.1097/00003246-200008000-00043

Yipp BG, Andonegui G, Howlett CJ, Robbins SM, Hartung T, Ho M, et al. Profound differences in leukocyte-endothelial cell responses to lipopolysaccharide versus lipoteichoic acid. The Journal of Immunology. 2002;168(9):4650−4658. doi: 10.4049/jimmunol.168.9.4650. DOI: https://doi.org/10.4049/jimmunol.168.9.4650

Ren Y, Xie Y, Jiang G, Fan J, Yeung J, Li W, et al. Apoptotic cells protect mice against lipopolysaccharide-induced shock. The Journal of Immunology. 2008;180(7):4978−4985. doi: 10.4049/jimmunol.180.7.4978. DOI: https://doi.org/10.4049/jimmunol.180.7.4978

Alam Q, Krishnamurthy S. Dihydroquercetin ameliorates LPS-induced neuroinflammation and memory deficit. Current Research in Pharmacology and Drug Discovery. 2022;3:100091. doi: 10.1016/j.crphar.2022.100091. DOI: https://doi.org/10.1016/j.crphar.2022.100091

Zlokovic BV. Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends in Neurosciences. 2005;28(4):202−208. doi: 10.1016/j.tins.2005.02.001. DOI: https://doi.org/10.1016/j.tins.2005.02.001

Cunningham TJ, Souayah N, Jameson B, Mitchell J, Yao L. Systemic treatment of cerebral cortex lesions in rats with a new secreted phospholipase A2 inhibitor. Journal of Neurotrauma. 2004;21(11):1683−1691. doi: 10.1089/neu.2004.21.1683. DOI: https://doi.org/10.1089/0897715042441792

Murakami M, Kudo I. Phospholipase A2. The Journal of Biochemistry. 2002;131(3):285−292. doi: 10.1093/oxfordjournals.jbchem.a003101. DOI: https://doi.org/10.1093/oxfordjournals.jbchem.a003101

Cunningham TJ, Yao L, Oetinger M, Cort L, Blankenhorn EP, Greenstein JI. Secreted phospholipase A2 activity in experimental autoimmune encephalomyelitis and multiple sclerosis. Journal of Neuroinflammation. 2006;3(1):1−8. doi: 10.1186/1742-2094-3-26. DOI: https://doi.org/10.1186/1742-2094-3-26

Aminian A, Hamidi F, Mohebalian H. Amount of High Mobility Group Box protein-1 Produced by Inflamed Microgelial cell line, BV-2, Under the Effect of Glycyrrhizin Component of Glycyrrhiza glabra (Licorice). Journal of Neyshabur University of Medical Sciences. 2020;7(4 (25) ):31−42. https://sid.ir/paper/954245/en

Avinash K, Sushma P, Chandan S, Gopenath T, Kiran M, Kanthesh B. In silico screened flavanoids of Glycyrrhiza glabra Inhibit cPLA2 and sPLA2 in LPS stimulated macrophages. Bulletin of Environment, Pharmacology and Life Sciences. 2021;10:14−24.

Lysakova-Devine T, Keogh B, Harrington B, Nagpal K, Halle A, Golenbock DT, et al. Viral inhibitory peptide of TLR4, a peptide derived from vaccinia protein A46, specifically inhibits TLR4 by directly targeting MyD88 adaptor-like and TRIF-related adaptor molecule. The Journal of Immunology. 2010;185(7):4261−4271. doi: 10.4049/jimmunol.1002013. DOI: https://doi.org/10.4049/jimmunol.1002013

Tanaka S, Ide M, Shibutani T, Ohtaki H, Numazawa S, Shioda S, et al. Lipopolysaccharide‐induced microglial activation induces learning and memory deficits without neuronal cell deathin rats. Journal of neuroscience research. 2006;83(4):557−566. doi: 10.1002/jnr.20752. DOI: https://doi.org/10.1002/jnr.20752

Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458−462. doi: 10.1038/35013070. DOI: https://doi.org/10.1038/35013070

Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, et al. Cholinergic modulation of microglial activation by α7 nicotinic receptors. Journal of Neurochemistry. 2004;89(2):337−343. doi: 10.1046/j.1471-4159.2004.02347.x. DOI: https://doi.org/10.1046/j.1471-4159.2004.02347.x

Tyagi E, Agrawal R, Nath C, Shukla R. Effect of anti-dementia drugs on LPS induced neuroinflammation in mice. Life Sciences. 2007;80(21):1977−1983. doi: 10.1016/j.lfs.2007.02.039. DOI: https://doi.org/10.1016/j.lfs.2007.02.039

Chang C-h, Grace AA. Amygdala β-noradrenergic receptors modulate delayed downregulation of dopamine activity following restraint. Journal of Neuroscience. 2013;33(4):1441−1450. doi: 10.1523/JNEUROSCI.2420-12.2013. DOI: https://doi.org/10.1523/JNEUROSCI.2420-12.2013

Valenti O, Lodge DJ, Grace AA. Aversive stimuli alter ventral tegmental area dopamine neuron activity via a common action in the ventral hippocampus. Journal of Neuroscience. 2011;31(11):4280−4289. doi: 10.1523/JNEUROSCI.5310-10.2011. DOI: https://doi.org/10.1523/JNEUROSCI.5310-10.2011

Liu HH, Payne HR, Wang B, Brady ST. Gender differences in response of hippocampus to chronic glucocorticoid stress: role of glutamate receptors. Journal of Neuroscience Research. 2006;83(5):775−786. doi: 10.1002/jnr.20782. DOI: https://doi.org/10.1002/jnr.20782

Rang H, Ritter J, Flower R, Henderson G. In: Rang H, Ritter J, Flower R, editors. Rang and Dales Pharmacology. Chapter 3: Drugs affecting major organ systems. 10th edition. UK: Elsevier Churchill Livingstone; 2023. pp. 220−227.

Arroyo L, Carreras R, Valent D, Peña R, Mainau E, Velarde A, et al. Effect of handling on neurotransmitter profile in pig brain according to fear related behaviour. Physiology & Behavior. 2016;167:374−381. doi: 10.1016/j.physbeh.2016.10.005. DOI: https://doi.org/10.1016/j.physbeh.2016.10.005

Ferrari P, Van Erp A, Tornatzky W, Miczek K. Accumbal dopamine and serotonin in anticipation of the next aggressive episode in rats. European Journal of Neuroscience. 2003;17(2):371−378. doi: 10.1046/j.1460-9568.2003.02447.x. DOI: https://doi.org/10.1046/j.1460-9568.2003.02447.x

O'Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N, et al. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2, 3-dioxygenase activation in mice. Molecular psychiatry. 2009;14(5):511−522. doi: 10.1038/sj.mp.4002148. DOI: https://doi.org/10.1038/sj.mp.4002148

Wirthgen E, Tuchscherer M, Otten W, Domanska G, Wollenhaupt K, Tuchscherer A, et al. Activation of indoleamine 2, 3-dioxygenase by LPS in a porcine model. Innate immunity. 2014;20(1):30−39. doi: 10.1177/1753425913481252. DOI: https://doi.org/10.1177/1753425913481252

Dobos N, de Vries EF, Kema IP, Patas K, Prins M, Nijholt IM, et al. The role of indoleamine 2, 3-dioxygenase in a mouse model of neuroinflammation-induced depression. Journal of Alzheimer's Disease. 2012;28(4):905−915. doi: 10.3233/JAD-2011-111097. DOI: https://doi.org/10.3233/JAD-2011-111097

Gou Z, Jiang S, Zheng C, Tian Z, Lin X. Equol inhibits LPS-induced oxidative stress and enhances the immune response in chicken HD11 macrophages. Cellular Physiology and Biochemistry. 2015;36(2):611−621. doi: 10.1159/000430124. DOI: https://doi.org/10.1159/000430124

Jangra A, Kwatra M, Singh T, Pant R, Kushwah P, Ahmed S, et al. Edaravone alleviates cisplatin-induced neurobehavioral deficits via modulation of oxidative stress and inflammatory mediators in the rat hippocampus. European Journal of Pharmacology. 2016;791:51−61. doi: 10.1016/j.ejphar.2016.08.003. DOI: https://doi.org/10.1016/j.ejphar.2016.08.003

Lingappan K. NF-κB in oxidative stress. Current Opinion in Toxicology. 2018;7:81−86. doi: 10.1016/j.cotox.2017.11.002. DOI: https://doi.org/10.1016/j.cotox.2017.11.002

Choubey P, Kwatra M, Pandey SN, Kumar D, Dwivedi DK, Rajput P, et al. Ameliorative effect of fisetin against lipopolysaccharide and restraint stress-induced behavioral deficits via modulation of NF-κB and IDO-1. Psychopharmacology. 2019;236(2):741−752. doi: 10.1007/s00213-018-5105-3. DOI: https://doi.org/10.1007/s00213-018-5105-3

Justin A, Ashwini P, Jose JA, Jeyarani V, Dhanabal S, Manisha C, et al. Two rationally identified novel glitazones reversed the behavioral dysfunctions and exhibited neuroprotection through ameliorating brain cytokines and oxy-radicals in ICV-LPS neuroinflammatory rat model. Frontiers in Neuroscience. 2020;14:530148. DOI: https://doi.org/10.3389/fnins.2020.530148

Khan A, Ali T, Rehman SU, Khan MS, Alam SI, Ikram M, et al. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Frontiers in Pharmacology. 2018;9:1383. doi: 10.3389/fnins.2020.530148. DOI: https://doi.org/10.3389/fphar.2018.01383

Cumiskey D, Butler MP, Moynagh PN, O'connor J. Evidence for a role for the group I metabotropic glutamate receptor in the inhibitory effect of tumor necrosis factor-α on long-term potentiation. Brain Research. 2007;1136:13−19. doi: 10.1016/j.brainres.2006.12.019. DOI: https://doi.org/10.1016/j.brainres.2006.12.019

Bon CL, Garthwaite J. On the role of nitric oxide in hippocampal long-term potentiation. Journal of Neuroscience. 2003;23(5):1941−1948. doi: 10.1523/JNEUROSCI.23-05-01941.2003. DOI: https://doi.org/10.1523/JNEUROSCI.23-05-01941.2003

Suski JM, Lebiedzinska M, Bonora M, Pinton P, Duszynski J, Wieckowski MR. Relation between mitochondrial membrane potential and ROS formation. Mitochondrial bioenergetics. In: C Palmeira, A Moreno, editors. Mitochondrial Bioenergetics. Humana Totowa, NJ: Springer; 2012. pp. 183−205. doi: 10.1007/978-1-61779-382-0_12. DOI: https://doi.org/10.1007/978-1-61779-382-0_12

Nizri E, Hamra-Amitay Y, Sicsic C, Lavon I, Brenner T. Anti-inflammatory properties of cholinergic up-regulation: a new role for acetylcholinesterase inhibitors. Neuropharmacology. 2006;50(5):540−547. doi: 10.1016/j.neuropharm.2005.10.013. DOI: https://doi.org/10.1016/j.neuropharm.2005.10.013

Takimoto T, Sato K, Akiba Y, Takahashi K. Role of chicken TL1A on inflammatory responses and partial characterization of its receptor. The Journal of Immunology. 2008;180(12):8327−8332. doi: 10.4049/jimmunol.180.12.8327. DOI: https://doi.org/10.4049/jimmunol.180.12.8327

Dantzer R. Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. European Journal of Pharmacology. 2004;500(1−3):399−411. doi: 10.1016/j.ejphar.2004.07.040. DOI: https://doi.org/10.1016/j.ejphar.2004.07.040

Fischer DB, William AH, Strauss AC, Unger ER, Jason LA, Marshall Jr GD, et al. Chronic fatigue syndrome: the current status and future potentials of emerging biomarkers. Fatigue: Biomedicine, Health & Behavior. 2014;2(2):93−109. doi: 10.1080/21641846.2014.906066. DOI: https://doi.org/10.1080/21641846.2014.906066

Katafuchi T, Kondo T, Yasaka T, Kubo K, Take S, Yoshimura M. Prolonged effects of polyriboinosinic: polyribocytidylic acid on spontaneous running wheel activity and brain interferon-α mRNA in rats: a model for immunologically induced fatigue. Neuroscience. 2003;120(3):837−845. doi: 10.1016/S0306-4522(03)00365-8. DOI: https://doi.org/10.1016/S0306-4522(03)00365-8

Zhang Z-T, Du X-M, Ma X-J, Zong Y, Chen J-K, Yu C-L, et al. Activation of the NLRP3 inflammasome in lipopolysaccharide-induced mouse fatigue and its relevance to chronic fatigue syndrome. Journal of neuroinflammation. 2016;13:1−11. doi: 10.1186/s12974-016-0539-1. DOI: https://doi.org/10.1186/s12974-016-0539-1

Cullen W, Kearney Y, Bury G. Prevalence of fatigue in general practice. Irish Journal of Medical Science. 2002;171:10−12. doi: 10.1007/BF03168931. DOI: https://doi.org/10.1007/BF03168931

Foster CG, Landowski LM, Sutherland BA, Howells DW. Differences in fatigue-like behavior in the lipopolysaccharide and poly I: C inflammatory animal models. Physiology & Behavior. 2021;232:113347. doi: 10.1016/j.physbeh.2021.113347. DOI: https://doi.org/10.1016/j.physbeh.2021.113347

Huang X, Hussain B, Chang J. Peripheral inflammation and blood–brain barrier disruption: effects and mechanisms. CNS Neuroscience & Therapeutics. 2021;27(1):36−47. doi: 10.1111/cns.13569. DOI: https://doi.org/10.1111/cns.13569

Blomberg J, Gottfries C-G, Elfaitouri A, Rizwan M, Rosén A. Infection elicited autoimmunity and myalgic encephalomyelitis/chronic fatigue syndrome: an explanatory model. Frontiers in Immunology. 2018:229. doi: /10.3389/fimmu.2018.00229. PMID: 29497420. DOI: https://doi.org/10.3389/fimmu.2018.00229

Dantzer R, O'connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience. 2008;9(1):46−56. doi: 10.1038/nrn2297.

Miller AH, Jones JF, Drake DF, Tian H, Unger ER, Pagnoni G. Decreased basal ganglia activation in subjects with chronic fatigue syndrome: association with symptoms of fatigue. PLoS One. 2014;9(5):e98156. doi: 10.1371/journal.pone.0098156. DOI: https://doi.org/10.1371/journal.pone.0098156

Noda M, Ifuku M, Hossain MS, Katafuchi T. Glial activation and expression of the serotonin transporter in chronic fatigue syndrome. Frontiers in Psychiatry. 2018;9:589. doi: 10.3389/fpsyt.2018.00589. DOI: https://doi.org/10.3389/fpsyt.2018.00589

Ho N, Sommers M. Anhedonia: a concept analysis. Archives of Psychiatric Nursing. 2013;27(3):121−129. doi: 10.1016/j.apnu.2013.02.001. DOI: https://doi.org/10.1016/j.apnu.2013.02.001

Lamontagne SJ. Investigating the Dopaminergic and Glucocorticoid Systems as Underlying Mechanisms of Anhedonia (Master's thesis). Queen's University Canada; 2017.

Treadway MT, Zald DH. Reconsidering anhedonia in depression: lessons from translational neuroscience. Neuroscience & Biobehavioral Reviews. 2011;35(3):537−555. doi: 10.1016/j.neubiorev.2010.06.006. DOI: https://doi.org/10.1016/j.neubiorev.2010.06.006

Papp M, Willner P, Muscat R. An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology. 1991;104:255−259. doi: 10.1007/BF02244188. DOI: https://doi.org/10.1007/BF02244188

Rees L, Ayoub O, Haverson K, Birchall M, Bailey M. Differential major histocompatibility complex class II locus expression on human laryngeal epithelium. Clinical & Experimental Immunology. 2003;134(3):497−502. doi: 10.1111/j.1365-2249.2003.02301.x. DOI: https://doi.org/10.1111/j.1365-2249.2003.02301.x

Banks WA, Gray AM, Erickson MA, Salameh TS, Damodarasamy M, Sheibani N, et al. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. Journal of Neuroinflammation. 2015;12:1−15. doi: 10.1186/s12974-015-0434-1. DOI: https://doi.org/10.1186/s12974-015-0434-1

DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. Journal of Neurochemistry. 2016;139:136−153. doi: 10.1111/jnc.13607. DOI: https://doi.org/10.1111/jnc.13607

Shastri A, Bonifati DM, Kishore U. Innate immunity and neuroinflammation. Mediators of Inflammation. 2013(1); Article ID 342931. doi: 10.1155/2013/342931. DOI: https://doi.org/10.1155/2013/342931

Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annual review of Immunology. 2017;35:441−468. doi: 10.1146/annurev-immunol-051116-052358. DOI: https://doi.org/10.1146/annurev-immunol-051116-052358

Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, et al. Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. Journal of Neuroinflammation. 2008;5(1):1−14. doi: 10.1186/1742-2094-5-15. DOI: https://doi.org/10.1186/1742-2094-5-15

Dantzer R. O'Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9:46−56. doi:10.1038/nrn2297. DOI: https://doi.org/10.1038/nrn2297

MacAulay RK, McGovern JE, Cohen AS. Understanding anhedonia: the role of perceived control. Anhedonia: A Comprehensive Handbook Volume I: Conceptual Issues and Neurobiological Advances. 2014:23−49. doi: 10.1007/978-94-017-8591-4_2. DOI: https://doi.org/10.1007/978-94-017-8591-4_2

Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nature Reviews Immunology. 2016;16(1):22−34. doi: 10.1038/nri.2015.5. DOI: https://doi.org/10.1038/nri.2015.5

Barrie N, Manolios N. The endocannabinoid system in pain and inflammation: its relevance to rheumatic disease. European Journal of Rheumatology. 2017;4(3):210. doi: 10.5152/eurjrheum.2017.17025. DOI: https://doi.org/10.5152/eurjrheum.2017.17025

Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, Irwin MR. Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biological Psychiatry. 2010;68(8):748−754. doi: 10.1016/j.biopsych.2010.06.010. DOI: https://doi.org/10.1016/j.biopsych.2010.06.010

Stone TW, Darlington LG. Endogenous kynurenines as targets for drug discovery and development. Nature Reviews Drug Discovery. 2002;1(8):609−620. doi: 10.1038/nrd870. DOI: https://doi.org/10.1038/nrd870

Chiarugi A, Calvani M, Meli E, Traggiai E, Moroni F. Synthesis and release of neurotoxic kynurenine metabolites by human monocyte-derived macrophages. Journal of Neuroimmunology. 2001;120(1−2):190−198. doi: 10.1016/S0165-5728(01)00418-0. DOI: https://doi.org/10.1016/S0165-5728(01)00418-0

van Heesch F, Prins J, Konsman JP, Westphal KG, Olivier B, Kraneveld AD, et al. Lipopolysaccharide-induced anhedonia is abolished in male serotonin transporter knockout rats: an intracranial self-stimulation study. Brain, Behavior, and Immunity. 2013;29:98−103. doi: 10.1016/j.bbi.2012.12.013. DOI: https://doi.org/10.1016/j.bbi.2012.12.013

Biesmans S, Matthews LJ, Bouwknecht JA, De Haes P, Hellings N, Meert TF, et al. Systematic analysis of the cytokine and anhedonia response to peripheral lipopolysaccharide administration in rats. BioMed Research International. 2016;9085273. doi: 10.1155/2016/9085273. DOI: https://doi.org/10.1155/2016/9085273

Biesmans S, Meert TF, Bouwknecht JA, Acton PD, Davoodi N, De Haes P, et al. Systemic immune activation leads to neuroinflammation and sickness behavior in mice. Mediators of Inflammation. 2013;271359. doi: 10.1155/2013/271359. DOI: https://doi.org/10.1155/2013/271359

Dantzer R. Cytokine, sickness behavior, and depression. Immunology and Allergy Clinics. 2009;29(2):247−264. doi: 10.1016/j.iac.2009.02.002. DOI: https://doi.org/10.1016/j.iac.2009.02.002

Fields CT, Chassaing B, Castillo-Ruiz A, Osan R, Gewirtz AT, de Vries GJ. Effects of gut-derived endotoxin on anxiety-like and repetitive behaviors in male and female mice. Biology of Sex Differences. 2018;9(1):1−14. doi: 10.1186/s13293-018-0166-x. DOI: https://doi.org/10.1186/s13293-018-0166-x

Sulakhiya K, Keshavlal GP, Bezbaruah BB, Dwivedi S, Gurjar SS, Munde N, et al. Lipopolysaccharide induced anxiety-and depressive-like behaviour in mice are prevented by chronic pre-treatment of esculetin. Neuroscience Letters. 2016;611:106−111. doi: 10.1016/j.neulet.2015.11.031. DOI: https://doi.org/10.1016/j.neulet.2015.11.031

Becskei C, Riediger T, Hernádfalvy N, Arsenijevic D, Lutz TA, Langhans W. Inhibitory effects of lipopolysaccharide on hypothalamic nuclei implicated in the control of food intake. Brain, Behavior, and Immunity. 2008;22(1):56−64. doi: 10.1016/j.bbi.2007.06.002. DOI: https://doi.org/10.1016/j.bbi.2007.06.002

Gaykema RP, Goehler LE. Lipopolysaccharide challenge-induced suppression of Fos in hypothalamic orexin neurons: their potential role in sickness behavior. Brain, Behavior, and Immunity. 2009;23(7):926−930. doi: 10.1016/j.bbi.2009.03.005. DOI: https://doi.org/10.1016/j.bbi.2009.03.005

Riediger T, Cordani C, Potes CS, Lutz TA. Involvement of nitric oxide in lipopolysaccharide induced anorexia. Pharmacology Biochemistry and Behavior. 2010;97(1):112−120. doi: 10.1016/j.pbb.2010.04.015. DOI: https://doi.org/10.1016/j.pbb.2010.04.015