Effects of three anesthesia and two tranquilizers’ protocols on stress response during handling in tilapia (Oreochromis niloticus)
Main Article Content
Abstract
To determine the effect of anesthesia and tranquilization on the stress response of tilapia (Oreochromis nilotica) during a handling procedure. We assess three anesthetics: ketamine, MS222, and clove oil; and two tranquilizers: xylazine, and medetomidine, which were administrated by submersion in adult tilapia. Our results showed a significant difference in cortisol levels between treatments after handling procedure (P = 0.0002), where xylazine had the highest cortisol levels compared to the other treatments. We also found differences between induction and recovery times in the different treatments. Then, animals exposed to xylazine took longer to present induction effects, than the other treatments (P < 0.0001). For recovery times, ketamine presents the longest recovery times, than clove oil and MS222, but not when compared to animals exposed to medetomidine and xylazine (P = 0.0019). We observed paleness in animals exposed to medetomidine.
Article Details
References
Sneddon LU. Clinical anesthesia and analgesia in fish. Journal of Exotic Pet Medicine. 2012;21(1):32−43. doi: 10.1053/j.jepm.2011.11.009.
Al-Hamdani AH, Ebrahim SK, Mohammad FK. Experimental xylazine-ketamine anesthesia in the common carp (Cyprinus carpio). Journal of Wildlife Diseases. 2010;46(2):596−598. doi: 10.7589/0090-3558-46.2.596.
Hunter RP. Interspecies allometric scaling. In: F Cunningham, J Elliott, P Lees, editors. Comparative and Veterinary Pharmacology. Berlin, Heidelberg: Springer Berlin; 2010. pp. 139−157. doi: 10.1007/978-3-642-10324-7_6.
Stetter MD. Fish and amphibian anesthesia. Veterinary Clinics of North America: Exotic Animal Practice. 2001;4(1):69−82. doi: 10.1016/S1094-9194(17)30052-X.
Sink TD, Strange RJ, Sawyers RE. Clove oil used at lower concentrations is less effective than MS-222 at reducing cortisol stress responses in anesthetized rainbow trout. North American Journal of Fisheries Management. 2007;27(1):156−161. doi: 10.1577/M05-103.1.
Huang W-C, Hsieh Y-S, Chen IH, Wang C-H, Chang H-W, Yang C-C, et al. Combined use of MS-222 (tricaine) and isoflurane extends anesthesia time and minimizes cardiac rhythm side effects in adult zebrafish. Zebrafish. 2010;7(3):297−304. doi: 10.1089/zeb.2010.0653.
Kreeger TJ, Arnemo JM. Handbook of Wildlife Chemical Immobilization. 4th ed. Sybille, Wyoming: Terry J. Kreeger; 2012. 448 pp.
Bastos-Ramos WP, Gonçalves NMFM, Bacila M. Anesthesia and analgesia in Antarctic fish: an experimental approach. Archives of Veterinary Science. 1998;3(1):95−100. doi: 10.5380/avs.v3i1.3745.
Ward JL, McCartney SP, Chinnadurai SK, Posner LP. Development of a minimum-anesthetic-concentration depression model to study the effects of various analgesics in goldfish (Carassius auratus). Journal of Zoo and Wildlife Medicine. 2012;43(2):214−222. doi: 10.1638/2010-0088.1.
Schwartz DD, Clark TP. Affinity of detomidine, medetomidine, and xylazine for alpha-2 adrenergic receptor subtypes. Journal of Veterinary Pharmacology and Therapeutics. 1998;21(2):107−111. doi: 10.1046/j.1365-2885.1998.00113.x.
Ruuskanen JO, Peitsaro N, Kaslin JVM, Panula P, Scheinin M. Expression and function of α2-adrenoceptors in zebrafish: drug effects, mRNA and receptor distributions. Journal of Neurochemistry. 2005;94(6):1559−1569. doi: 10.1111/j.1471-4159.2005.03305.x.
Braithwaite VA, Ebbesson LOE. Pain and stress responses in farmed fish. Scientific & Technical Review. 2014;33(1):245−253. doi: 10.20506/rst.33.1.2285.
Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews. 2000;21(1):55−89. doi: 10.1210/edrv.21.1.0389.
Bentson KL, Capitanio JP, Mendoza SP. Cortisol responses to immobilization with Telazol or ketamine in baboons (Papio cynocephalus/anubis) and rhesus macaques (Macaca mulatta). Journal of Medical Primatology. 2003;32(3):148−160. doi: 10.1034/j.1600-0684.2003.00018.x.
Wendelaar SE. The stress response in fish. Physiological Reviews. 1997;77(3):591−625. doi: 10.1152/physrev.1997.77.3.591.
Costa LS, de Araújo FG, Paulino RR, Pereira LJ, Rodrigues EJD, Ribeiro PAP, et al. Daily rhythms of cortisol and glucose and the influence of the light/dark cycle on anaesthesia in Nile tilapia (Oreochromis niloticus): Does the timing of anesthetic administration affect the stress response? Aquaculture Research. 2019;50(9):2371−2379. doi: 10.1111/are.14118.
Anderson WG. The endocrinology of 1α-hydroxycorticosterone in elasmobranch fish: a review. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2012;162(2):73−80. doi: 10.1016/j.cbpa.2011.08.015.
Nematollahi MA, van Pelt-Heerschap H, Komen H. High corticosterone and sex reversal in common carp (Cyprinus carpio L.) with adrenal hyperplasia caused by P450c17a2 deficiency. Aquaculture. 2014;418−419:165−170. doi: 10.1016/j.aquaculture.2013.10.011.
Nematollahi MA, Pelt van H, Komen J. Response to Stress in 17 alpha-hydroxylase Deficient Common Carp (Cyprinus carpio L.). Journal of Agricultural Science and Technology. 2013;15(2):303−310. http://jast.modares.ac.ir/article-23-5799-en.html
Willi RA, Salgueiro-González N, Faltermann S, Hettich T, Fent K. Environmental glucocorticoids corticosterone, betamethasone and flumethasone induce more potent physiological than transcriptional effects in zebrafish embryos. Science of The Total Environment. 2019;672:183−191. doi: 10.1016/j.scitotenv.2019.03.426.
Baker MR, Gobush KS, Vynne CH. Review of factors influencing stress hormones in fish and wildlife. Journal for Nature Conservation. 2013;21(5):309−318. doi: 10.1016/j.jnc.2013.03.003.
Bonier F, Martin PR, Moore IT, Wingfield JC. Do baseline glucocorticoids predict fitness? Trends in Ecology & Evolution. 2009;24(11):634−642. doi: 10.1016/j.tree.2009.04.013.
Breuner CW, Patterson SH, Hahn TP. In search of relationships between the acute adrenocortical response and fitness. General and Comparative Endocrinology. 2008;157(3):288−295. doi: 10.1016/j.ygcen.2008.05.017.
Birnie MT, Eapen AV, Kershaw YM, Lodge D, Collingridge GL, Conway-Campbell BL, et al. The time of day influences stress hormone response to ketamine. Journal of Neuroendocrinology. 2022;34(10):e13194. doi: 10.1111/jne.13194.
Hernández SE, Sernia C, Bradley AJ. The effect of three anaesthetic protocols on the stress response in cane toads (Rhinella marina). Veterinary Anaesthesia and Analgesia. 2012;39(6):584−590. doi: 10.1111/j.1467-2995.2012.00753.x.
Liu G-l, Cui Y-f, Lu C, Zhao P. Ketamine a dissociative anesthetic: Neurobiology and biomolecular exploration in depression. Chemico-Biological Interactions. 2020;319:109006. doi: 10.1016/j.cbi.2020.109006.
Wright M. Pharmacologic effects of ketamine and its use in veterinary medicine. Journal of American Veterinary Medical Association. 1982;180(12):1462−1471.
ALPHARMA. Animal Health Ltd. MS222 (Tricaine methane sulphonate) 2001 http://www.tossehuset.dk/pdf/MS222.pdf
Smith SA, Harms CA. Fish. In: J Carpenter, C Harms, editors. Carpenter's Exotic Animal Formulary. 6th ed. New Delhi: WB Saunders; 2023. pp. 22−71. doi: 10.1016/B978-0-323-83392-9.00002-2.
Keene JL, Noakes DLG, Moccia RD, Soto CG. The efficacy of clove oil as an anaesthetic for rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture Research. 1998;29(2):89−101. doi: 10.1046/j.1365-2109.1998.00927.x.
Barbas LAL, Torres MF, da Costa BMPA, Feitosa MJM, Maltez LC, Amado LL, et al. Eugenol induces body immobilization yet evokes an increased neuronal excitability in fish during short-term baths. Aquatic Toxicology. 2021;231:105734. doi: 10.1016/j.aquatox.2020.105734.
Miyasaca M, Domino EF. Neuronal mechanisms of ketamine-induced anesthesia. International Journal of Neuropharmacology. 1968;7(6):557−573. doi: 10.1016/0028-3908(68)90067-1.
License
Veterinaria México OA by Facultad de Medicina Veterinaria y Zootecnia - Universidad Nacional Autónoma de México is licensed under a Creative Commons Attribution 4.0 International Licence.
Based on a work at http://www.revistas.unam.mx
- All articles in Veterinaria México OA re published under the Creative Commons Attribution 4.0 Unported (CC-BY 4.0). With this license, authors retain copyright but allow any user to share, copy, distribute, transmit, adapt and make commercial use of the work, without needing to provide additional permission as long as appropriate attribution is made to the original author or source.
- By using this license, all Veterinaria México OAarticles meet or exceed all funder and institutional requirements for being considered Open Access.
- Authors cannot use copyrighted material within their article unless that material has also been made available under a similarly liberal license.