Hematological profiles of wild birds in the central Monte Desert, Argentina: first records

Main Article Content

Arnoldo Ángel Martín Quero
Agustín Zarco
Daniel Ordovini
Sofía Elena Méndez
Nora Bibiana María Gorla

Abstract

Hematological parameters are widely used in avian health assessment and ecological monitoring; however, information on wild birds inhabiting the central Argentine Monte Desert is scarce. In this study, we present the hematological profiles of 172 wild birds, mainly passerines, representing 14 species from the protected nature reserves of Ñacuñán and Telteca. Birds were captured with mist nets during spring, and blood samples were taken to analyze hematocrit (HCT), total red blood cell (RBC) and white blood cell (WBC) counts, differential leukocyte count, and heterophil/lymphocyte ratio (H/L). HCT values ranged from 47 to 60 %, RBC values ranged from 2.48 to 5.88 cell × 10⁶/µL and WBC values ranged from 1.84 to 7.07 cell × 103/µL. According to the predominant leukocyte lineage, most species in this study (12 of 14) showed a lymphocytic profile, with H/L ratios generally below 1.0. In particular, the Tropical kingbird (Tyrannus melancholicus) and Common diuca-finch (Diuca diuca) showed heterophilic profiles with H/L ratios ≥ 1.0, unlike other passerines. Although low H/L values suggest minimal chronic stress, these heterophilic species may require increased caution when interpreting stress-related indicators. This study provides the first reported values for these bird species inhabiting a desert environment characterized by natural stressors but limited anthropogenic disturbance, offering valuable references for ecological, veterinary, and conservation applications.

Keywords:
Passerines, Hematology, Red blood cell count, Hematocrit, Differential leukocyte count

Article Details

References

Bateson M, Feenders G. The use of passerine bird species in laboratory research: implications of basic biology for husbandry and welfare. Journal of the Institute for Laboratory Animal Research. 2010;51(4):394–408. doi: 10.1093/ilar.51.4.394. DOI: https://doi.org/10.1093/ilar.51.4.394

Messina S, Edwards DP, Eens M, Costantin D. Physiological and immunological responses of birds and mammals to forest degradation: a meta–analysis. Biological Conservation. 2018;224:223–229. doi: 10.1016/j.biocon.2018.06.002. DOI: https://doi.org/10.1016/j.biocon.2018.06.002

Smits JEG, Fernie KJ. Avian wildlife as sentinels of ecosystem health. Comparative Immunology, Microbiology, and Infectious Diseases. 2013;36(3):333–342. doi: 10.1016/j.cimid.2012.11.007. DOI: https://doi.org/10.1016/j.cimid.2012.11.007

Ruiz G, Rosenmann M, Novoa FF, Sabat P. Hematological parameters and stress index in Rufous–collared sparrows dwelling urban environments. The Condor: Ornithological Applications. 2002;104(1):162–166. doi: 10.1093/condor/104.1.162. DOI: https://doi.org/10.1093/condor/104.1.162

Sabater M, Forbes N. Avian haematology and biochemistry 1. Haematology. In Practice. 2014;36(10):510–518. doi: 10.1136/inp.g5870. DOI: https://doi.org/10.1136/inp.g5870

Samour J. Valores diagnósticos de hematología (Apéndice 2). In: J Samour. Medicina aviaria. 2a. edición. España: Elsevier; 2010. pp. 420–462.

Campbell TW. Exotic animal hematology. Veterinary Clinics of North America: Exotic Animal Practice. 2015;18(1):xi–xii. doi: 10.1016/j.cvex.2014.09.013. DOI: https://doi.org/10.1016/j.cvex.2014.09.013

Claver JA, Quaglia AIE. Comparative morphology, development, and function of blood cells in nonmammalian vertebrates. Journal of Exotic Pet Medicine. 2009;18(2):87–97. doi: 10.1053/j.jepm.2009.04.006. DOI: https://doi.org/10.1053/j.jepm.2009.04.006

Clark P, Boardman W, Raidal S. Atlas of Clinical Avian Hematology. Iowa, USA: John Wiley & Sons; 2009. 200 pp.

Weiss DJ, Wardrop KJ. Schalm´s Veterinary Hematology. 6th edition. Iowa, USA: Wiley–Blackwell; 2010. 1320 pp.

González NV, Barbeito CG. Histología de las aves. Buenos Aires, Argentina: Editorial de la Universidad Nacional de La Plata; 2014. 496 pp. doi: 10.35537/10915/43129. DOI: https://doi.org/10.35537/10915/43129

Kloskowski J, Kaczanowska E, Krogulec J, Grela P. Hematological indicators of habitat quality: erythrocyte parameters reflect greater parental effort of Red–necked Grebes under ecological trap conditions. The Condor: Ornithological Applications. 2017;119(2):239–250. doi: 10.1650/CONDOR-16-195.1. DOI: https://doi.org/10.1650/CONDOR-16-195.1

Fair J, Whitaker S, Pearson B. Sources of variation in haematocrit in birds. Ibis. 2007;149(3):535–552. doi: 10.1111/j.1474-919X.2007.00680.x. DOI: https://doi.org/10.1111/j.1474-919X.2007.00680.x

Krause JS, Németh Z, Pérez JH, Chmura HE, Ramenofsky M, Wingfield JC. Annual hematocrit profiles in two subspecies of white–crowned sparrow: a migrant and a resident comparison. Physiological and Biochemical Zoology. 2016;89(1):51–60. doi: 10.1086/684612. DOI: https://doi.org/10.1086/684612

Cīrule D, Krama T, Vrublevska J, Rantala MJ, Krams I. A rapid effect of handling on counts of white blood cells in a wintering passerine bird: a more practical measure of stress? Journal of Ornithology. 2012;153:161–166. doi: 10.1007/s10336-011-0719-9. DOI: https://doi.org/10.1007/s10336-011-0719-9

Jones MP. Avian Hematology. Clinics in Laboratory Medicine. 2015;35(3):649–659. doi: 10.1016/j.cll.2015.05.013. DOI: https://doi.org/10.1016/j.cll.2015.05.013

Davis AK, Maney DL, Maerz JC. The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Functional Ecology. 2008;22(5):760–772. doi: 10.1111/j.1365-2435.2008.01467.x. DOI: https://doi.org/10.1111/j.1365-2435.2008.01467.x

Muriel J, Vida C, Gil D, Pérez-Rodríguez L. Ontogeny of leukocyte profiles in a wild altricial passerine. Journal of Comparative Physiology B. 2021;191(1):195–206. doi: 10.1007/s00360-020-01323-z. DOI: https://doi.org/10.1007/s00360-020-01323-z

Ribeiro PVA, Gonçalves VF, de Magalhães Tolentino VC, Baesse CQ, Pires LP, Paniago LPM, et al. Effects of urbanisation and pollution on the heterophil/lymphocyte ratio in birds from Brazilian Cerrado. Environmental Science and Pollution Research. 2022;29(26):40204–40212. doi: 10.1007/s11356-022-19037-w. DOI: https://doi.org/10.1007/s11356-022-19037-w

Skwarska J, Podstawczyńska A, Bańbura M, Glądalski M, Kaliński A, Markowski M, et al. Effects of ambient temperature during the nestling stage on a stress indicator in nestling pied flycatchers Ficedula hypoleuca. International Journal of Biometeorology. 2022;66:139–148. doi: 10.1007/s00484-021-02199-6. DOI: https://doi.org/10.1007/s00484-021-02199-6

Włodarczyk R, Podlaszczuk P, Kaczmarek K, Janiszewski T, Minias P. Leukocyte profiles indicate nutritional, but not moulting stress in a migratory shorebird, the Common Snipe (Gallinago gallinago). Journal of Ornithology. 2018;159:345–354. doi: 10.1007/s10336-017-1516-x. DOI: https://doi.org/10.1007/s10336-017-1516-x

Banbura J, Skwarska J, Banbura M, Gladalski M, Holysz M, Kalinski A, et al. Spatial and temporal variation in heterophil–to–lymphocyte ratios of nestling passerine birds: comparison of blue tits and great tits. PLoS ONE. 2013;8(9):e74226. doi: 10.1371/journal.pone.0074226. DOI: https://doi.org/10.1371/journal.pone.0074226

Xie S, Romero LM, Htut ZW, McWhorter TJ. Stress responses to heat exposure in three species of Australian desert birds. Physiological and Biochemical Zoology. 2017;90(30):348–358. doi: 10.1086/690484. DOI: https://doi.org/10.1086/690484

Pinto FE, Neto EP, de Andrade TU, Endringer DC, Lenz D. Novel data for free-living saffron finch (Sicalis flaveola): reference hematological value and body mass. Comparative Clinical Pathology. 2016;25:465–468. doi: 10.1007/s00580-015-2212-y. DOI: https://doi.org/10.1007/s00580-015-2212-y

Roig FA, Roig–Juñent S, Corbalán V. Biogeography of the Monte Desert. Journal of Arid Environments. 2009;73(2):164–172. doi: 10.1016/j.jaridenv.2008.07.016. DOI: https://doi.org/10.1016/j.jaridenv.2008.07.016

Sagario MC, Cueto VR, Zarco A, Pol R, Marone L. Predicting how seed-eating passerines respond to cattle grazing in a semi-arid grassland using seed preferences and diet. Agriculture, Ecosystems & Environment. 2020;289: 106736. doi: 10.1016/j.agee.2019.106736. DOI: https://doi.org/10.1016/j.agee.2019.106736

Morrone JJ. Biogeographical regionalisation of the world: a reappraisal. Australian Systematic Botany. 2015;28(3):81–90. doi: 10.1071/SB14042. DOI: https://doi.org/10.1071/SB14042

Di Giacomo AS. Áreas importantes para la conservación de las aves en la Argentina: sitios prioritarios para la conservación de la biodiversidad. Temas de naturaleza y conservación 5. Buenos Aires, Argentina: Aves Argentinas/Asociación Ornitológica del Plata; 2005. 524 pp.

Remsen JV Jr., Areta JI, Cadena CD, Jaramillo A, Nores M, Pacheco JF, et al. A classification of the bird species of South America. American Ornithologists’ Union. 2016. https://www.museum.lsu.edu/~Remsen/SACCWordFiles/SACCBaseline01.html

Lucas AM, Jamroz C. Atlas of avian hematology. Agriculture monograph 25. Washington, DC, US: United States Department of Agriculture; 1961. 178 pp. doi: 10.5962/bhl.title.6392. DOI: https://doi.org/10.5962/bhl.title.6392

Aroch I, Targan N, Gancz AY. A novel modified semi-direct method for total leukocyte count in birds. Israel Journal of Veterinary Medicine. 2013;68(2):111–118.

Quero AAM, Zarco A, Landa FB, Gorla NBM. Plasma cholinesterase activity in wild birds from undisturbed woodlands in the central Monte Desert. Environmental Toxicology and Chemistry. 2019;38(8):1692–1700. doi: 10.1002/etc.4458. DOI: https://doi.org/10.1002/etc.4458

Potti J. Variation in the hematocrit of a passerine bird across life stages is mainly of environmental origin. Journal of Avian Biology. 2007;38(6):726–730. doi: 10.1111/j.2007.0908-8857.04073.x. DOI: https://doi.org/10.1111/j.2007.0908-8857.04073.x

Simon A, Thomas DW, Bourgault P, Blondel J, Perret P, Lambrechts MM. Between–population differences in nestling size and hematocrit level in blue tits (Parus caeruleus): a cross–fostering test for genetic and environmental effects. Canadian Journal of Zoology. 2005;83(5): 694–701. doi: 10.1139/z05-059. DOI: https://doi.org/10.1139/z05-059

Anderson TR. Biology of the ubiquitous house sparrow: from genes to populations. New York, US: Oxford University Press; 2006. 547 pp. doi: 10.1093/acprof:oso/9780195304114.001.0001. DOI: https://doi.org/10.1093/acprof:oso/9780195304114.001.0001

Aldea P, Sabat P. Osmoregulatory responses to dietary protein and water intake in the granivorous Zonotrichia capensis (Passerine, Emberizidae). Revista Chilena de Historia Natural. 2007;80(4):447–454. doi: 10.4067/S0716-078X2007000400006. DOI: https://doi.org/10.4067/S0716-078X2007000400006

Arora KL, Vatsalya V. Deleterious effects of molting on the morpho–physiology of Japanese quail layers (Coturnix japonica). International Journal of Poultry Science. 2011;10(2):120–124. doi: 10.3923/ijps.2011.120.124. DOI: https://doi.org/10.3923/ijps.2011.120.124

Krams I, Vrublevska J, Cirule D, Kivleniece I, Krama T, Rantala MJ, et al. Heterophil/lymphocyte ratios predict the magnitude of humoral immune response to a novel antigen in great tits (Parus major). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2012;161(4):422–428. doi: 10.1016/j.cbpa.2011.12.018. DOI: https://doi.org/10.1016/j.cbpa.2011.12.018

Seress G, Bókony V, Pipoly I, Szép T, Nagy K, Liker A. Urbanization, nestling growth and reproductive success in a moderately declining house sparrow population. Journal of Avian Biology. 2012;43(5):403–414. doi: 10.1111/j.1600-048X.2012.05527.x. DOI: https://doi.org/10.1111/j.1600-048X.2012.05527.x

Marshall K, Heatley JJ. Passerine Birds. In: Heatley JJ, Russell KE, editors. Exotic Animal Laboratory Diagnosis. Nueva Jersey, US: John Wiley & Sons; 2020. pp. 565–583. doi: 10.1002/9781119108610.ch28. DOI: https://doi.org/10.1002/9781119108610.ch28

Owen JC, Cornelius EA, Arsnoe DA, Garvin MC. Leukocyte response to eastern equine encephalomyelitis virus in a wild passerine bird. Avian Diseases. 2013;57(4):744–749. doi: 10.1637/10574-051513-reg.1. DOI: https://doi.org/10.1637/10574-051513-Reg.1

Vinkler M, Schnitzer J, Munclinger P, Votýpka J, Albrecht T. Haematological health assessment in a passerine with extremely high proportion of basophils in peripheral blood. Journal of Ornithology. 2010;151:841–849. doi: 10.1007/s10336-010-0521-0. DOI: https://doi.org/10.1007/s10336-010-0521-0

Fokidis HB, Greiner EC, Deviche P. Interspecific variation in avian blood parasites and haematology associated with urbanization in a desert habitat. Journal of Avian Biology. 2008;39(3):300–310. doi: 10.1111/j.0908-8857.2008.04248.x. DOI: https://doi.org/10.1111/j.0908-8857.2008.04248.x

Powel C, Lill A, Johnstone CP. Body condition and chronic stress in urban and rural noisy miners. The Open Ornithology Journal. 2013;6(1):25–31. doi: 10.2174/1874453201306010025. DOI: https://doi.org/10.2174/1874453201306010025