Challenges for Mexican sheep production in the era of precision livestock farming and artificial intelligence

Main Article Content

Manuel I. Vera Arias
Enrique Camacho-Pérez
Fernando Casanova-Lugo
José Herrera Camacho
Einar Vargas-Bello-Pérez
Alfonso J. Chay-Canul

Abstract

This narrative review discusses high-precision technologies applied to sheep production, with an emphasis on the use of computer vision and machine learning. It also reviews recent studies conducted in Mexico that have applied machine learning techniques to predict sheep body composition and image analysis methods to estimate body weight. These efforts have led to significant advances in the use of artificial intelligence models, such as You Only Look Once and Segment Anything, for monitoring and optimizing sheep production. In today’s interconnected world, decisions made in one context can immediately affect surrounding systems. Therefore, it is essential to consider individual animal welfare as a key factor in decision-making within production units, contributing to overall welfare. This article highlights emerging high-precision technologies in sheep farming, particularly those involving computer vision and machine learning.

Keywords:
Sheep production, Precision livestock farming, Machine learning, Computer vision, Artificial intelligence, Live weight estimation, Animal welfare

Article Details

References

Vargas-Bello-Pérez E, López CA, Ruiz-Romero RA, Chay-Canul AJ, Lee-Rangel HA, Gonzalez-Ronquillo M, et al. A brief update on sheep production in Mexico: challenges and prospects. Tropical and Subtropical Agroecosystems. 2023;26(3). doi: 10.56369/tsaes.4872. DOI: https://doi.org/10.56369/tsaes.4872

Secretaría de Agricultura y Desarrollo Rural. Detrás de la ovinocultura: una mirada a la crianza de ovejas en México. 2024. https://www.gob.mx/agricultura/es/articulos/detras-de-la-ovinocultura-una-mirada-a-la-crianza-de-ovejas-en-mexico

Marino R, Petrera F, Abeni F. Scientific productions on precision livestock farming: an overview of the evolution and current state of research based on a bibliometric analysis. Animals. 2023;13(14):2280. doi: 10.3390/ani13142280. DOI: https://doi.org/10.3390/ani13142280

Morrone S, Dimauro C, Gambella F, Cappai MG. Industry 4.0 and precision livestock farming (PLF): an up to date overview across animal productions. Sensors. 2022;22(12):4319. doi: 10.3390/s22124319. DOI: https://doi.org/10.3390/s22124319

Tzounis A, Katsoulas N, Bartzanas T, Kittas C. Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering. 2017;164:31–48. doi: 10.1016/j.biosystemseng.2017.09.007. DOI: https://doi.org/10.1016/j.biosystemseng.2017.09.007

Tedeschi LO, Greenwood PL, Halachmi I. Advancements in sensor technology and decision support intelligent tools to assist smart livestock farming. Journal of Animal Science. 2021;99(2):skab038. doi: 10.1093/jas/skab038.

Carabús A, Gispert M, Font-i-Furnols M. Imaging technologies to study the composition of live pigs: A review. Spanish Journal of Agricultural Research. 2016;14(3):e06R01. doi: 10.5424/sjar/2016143-8439. DOI: https://doi.org/10.5424/sjar/2016143-8439

Chay-Canul AJ, Tapia J, Canul-Solís J, Casanova-Lugo F, Piñeiro-Vázquez ÁT, Portillo-Salgado R, et al. Predictive biometrics of hair sheep through digital imaging. Veterinaria México OA. 2023;10. doi: 10.22201/fmvz.24486760e.2023.1150. DOI: https://doi.org/10.22201/fmvz.24486760e.2023.1150

Olsen E V., Christensen LB, Nielsen DB. A review of computed tomography and manual dissection for calibration of devices for pig carcass classification - Evaluation of uncertainty. Meat Science. 2017;123:35–44. doi: 10.1016/j.meatsci.2016.08.013. DOI: https://doi.org/10.1016/j.meatsci.2016.08.013

Kucha CT, Liu L, Ngadi MO. Non-destructive spectroscopic techniques and multivariate analysis for assessment of fat quality in pork and pork products: a review. Sensors. 2018;18(2):377. doi: 10.3390/s18020377. DOI: https://doi.org/10.3390/s18020377

Du C-J, Sun D-W. Recent developments in the applications of image processing techniques for food quality evaluation. Trends in Food Science & Technology. 2004;15(5):230–249. doi: 10.1016/j.tifs.2003.10.006. DOI: https://doi.org/10.1016/j.tifs.2003.10.006

Kongsro J. Estimation of pig weight using a Microsoft Kinect prototype imaging system. Computers and Electronics in Agriculture. 2014;109:32–35. doi: 10.1016/j.compag.2014.08.008. DOI: https://doi.org/10.1016/j.compag.2014.08.008

Gomes RA, Monteiro GR, Assis GJF, Busato KC, Ladeira MM, Chizzotti ML. Technical note: Estimating body weight and body composition of beef cattle trough digital image analysis. Journal of Animal Science. 2016;94(12):5414–5422. doi: 10.2527/jas.2016-0797. DOI: https://doi.org/10.2527/jas.2016-0797

Morota G, Ventura RV, Silva FF, Koyama M, Fernando SC. Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture. Journal of Animal Science. 2018;96(4):1540–1550. doi: 10.1093/jas/sky014. DOI: https://doi.org/10.1093/jas/sky014

Vargas-Bello-Pérez E, Espinoza-Sandoval OR, Gonzalez M, Angeles JC, Chay-Canul AJ, Lee-Rangel HA, et al. The role of artificial intelligence in Latin American ruminant production systems. Animal Frontiers. 2024;14(6):23–32. doi: 10.1093/af/vfae034. DOI: https://doi.org/10.1093/af/vfae034

Camacho-Pérez E, Lugo-Quintal JM, Tirink C, Aguilar-Quiñonez JA, Gastelum-Delgado MA, Lee-Rangel HA, et al. Predicting carcass tissue composition in Blackbelly sheep using ultrasound measurements and machine learning methods. Tropical Animal Health and Production. 2023;55(5):300. doi: 10.1007/s11250-023-03759-1. DOI: https://doi.org/10.1007/s11250-023-03759-1

Muñoz-Osorio GA, Tırınk C, Tyasi TL, Ramirez-Bautista MA, Cruz-Tamayo AA, Dzib-Cauich DA, et al. Using fat thickness and longissimus thoracis traits real-time ultrasound measurements in Black Belly ewe lambs to predict carcass tissue composition through multiresponse multivariate adaptive regression splines algorithm. Meat Science. 2024;207:109369. doi: 10.1016/j.meatsci.2023.109369. DOI: https://doi.org/10.1016/j.meatsci.2023.109369

Chay-Canul AJ, Pineda JJ, Olivares-Pérez J, Ríos-Rincón FG, García-Herrera R, Piñeiro-Vázquez ÁT, et al. Prediction of carcass characteristics of discarded Pelibuey ewes by ultrasound measurements. Revista Mexicana de Ciencias Pecuarias. 2019;10(2):473–481. doi: 10.22319/rmcp.v10i2.4551. DOI: https://doi.org/10.22319/rmcp.v10i2.4551

Morales-Martinez MA, Arce-Recinos C, Mendoza-Taco MM, Luna-Palomera C, Ramirez-Bautista MA, Piñeiro-Vazquez ÁT, et al. Developing equations for predicting internal body fat in Pelibuey sheep using ultrasound measurements. Small Ruminant Research. 2020;183:106031. doi: 10.1016/j.smallrumres.2019.106031. DOI: https://doi.org/10.1016/j.smallrumres.2019.106031

Shahinfar S, Al-Mamun HA, Park B, Kim S, Gondro C. Prediction of marbling score and carcass traits in Korean Hanwoo beef cattle using machine learning methods and synthetic minority oversampling technique. Meat Science. 2020;161:107997. doi: 10.1016/j.meatsci.2019.107997. DOI: https://doi.org/10.1016/j.meatsci.2019.107997

Aguilar-Quiñonez JA, Tırınk C, Gastelum-Delgado MA, Camacho-Pérez E, Tyasi TL, Herrera-Camacho J, et al. Prediction of carcass tissues composition using the neck and shoulder traits in hair lambs with multiresponse multivariate adaptive regression splines. Small Ruminant Research. 2023;227:107090. doi: 10.1016/j.smallrumres.2023.107090. DOI: https://doi.org/10.1016/j.smallrumres.2023.107090

Fan N, Liu G, Zhang C, Zhang J, Yu J, Sun Y. Predictability of carcass traits in live Tan sheep by real‐time ultrasound technology with least‐squares support vector machines. Animal Science Journal. 2022;93(1):e13733. doi: 10.1111/asj.13733 DOI: https://doi.org/10.1111/asj.13733

Tedeschi LO, Greenwood PL, Halachmi I. Advancements in sensor technology and decision support intelligent tools to assist smart livestock farming. Journal of Animal Science. 2021;99(2):skab038. doi: 10.1093/jas/skab038. DOI: https://doi.org/10.1093/jas/skab038

Tedeschi LO. ASAS-NANP Symposium: Mathematical Modeling in Animal Nutrition: The progression of data analytics and artificial intelligence in support of sustainable development in animal science. Journal of Animal Science. 2022;100(6):skac111. doi: 10.1093/jas/skac111. DOI: https://doi.org/10.1093/jas/skac111

Torres-Chable OM, Tırınk, C, Parra-Cortés RI, Delgado MÁG, Martínez IV, Gomez-Vazquez A, et al. Classification of FAMACHA© scores with support vector machine algorithm from body condition score and hematological parameters in Pelibuey sheep. Animals. 2025;15(5):737. doi: 10.3390/ani15050737. DOI: https://doi.org/10.3390/ani15050737

Hossein-Zadeh NG. Artificial intelligence in veterinary and animal science: applications, challenges, and future prospects. Computers and Electronics in Agriculture. 2025;235:110395. doi: 10.1016/j.compag.2025.110395. DOI: https://doi.org/10.1016/j.compag.2025.110395

Tırınk C. Comparison of bayesian regularized neural network, random forest regression, support vector regression and multivariate adaptive regression splines algorithms to predict body weight from biometrical measurements in Thalli sheep. Kafkas Üniversitesi Veteriner Fakültesi Dergisi. 2022;28(3):411-419. doi: 10.9775/kvfd.2022.27164. DOI: https://doi.org/10.9775/kvfd.2022.27164

Vázquez-Martínez I, Tırınk C, Salazar-Cuytun R, Mezo-Solis JA, Garcia RA, Orzuna-Orzuna JF, et al. Predicting body weight through biometric measurements in growing hair sheep using data mining and machine learning algorithms. Tropical Animal Health and Production. 2023;55(5):307. doi: 10.1007/s11250-023-03717-x. DOI: https://doi.org/10.1007/s11250-023-03717-x

Camacho-Pérez E, Chay-Canul AJ, Garcia-Guendulain JM, Rodríguez-Abreo O. Towards the estimation of body weight in sheep using metaheuristic algorithms from biometric parameters in microsystems. Micromachines. 2022;13(8):1325. doi: 10.3390/mi13081325. DOI: https://doi.org/10.3390/mi13081325

Chay-Canul AJ, Camacho-Pérez E, Casanova-Lugo F, Rodríguez-Abreo O, Cruz-Fernández M, Rodríguez-Reséndiz J. Neural network-based body weight prediction in Pelibuey sheep through biometric measurements. Technologies. 2024;12(5):59. doi: 10.3390/technologies12050059. DOI: https://doi.org/10.3390/technologies12050059

Badgujar CM, Poulose A, Gan H. Agricultural object detection with You Only Look Once (YOLO) Algorithm: A bibliometric and systematic literature review. Computers and Electronics in Agriculture. 2024;223:109090. doi: 10.1016/j.compag.2024.109090. DOI: https://doi.org/10.1016/j.compag.2024.109090

Castro DP, Diniz FA, Lima FA, Silva TS, Silva APSE, Nolêto RMA, et al. Artificial intelligence applied to animal production. Ciência Rural. 2025;55(7):e20230520. doi: 10.1590/0103-8478cr20230520. DOI: https://doi.org/10.1590/0103-8478cr20230520