Identification of ABC genes in monogeneans of the Ancyrocephalidae family: an in silico and DNA microarray approach

Main Article Content

Citlalic Altagracia Pimentel-Acosta
Daniel Toala-Franco
Víctor Hugo Caña Bozada
Emma Josefina Fájer-Ávila
Francisco Neptalí Morales-Serna

Abstract

The combination of molecular methods is increasingly efficient for identifying genes in non-model species such as monogeneans. These organisms are parasites that can cause health problems in fish kept in captivity or under farming conditions, making it important to design effective treatments that di[1]rectly target the parasites’ defense systems. ABC (ATP-binding cassette) trans[1]porters are proteins involved in the detoxification of xenobiotics and in drug resistance mechanisms. In monogeneans, knowledge related to ABC trans[1]porters is limited. In the present study, putative genes encoding ABC proteins were identified in two species of monogeneans, Scutogyrus longicornis and Cichlidogyrus spp. belonging to the Ancyrocephalidae family. For this pur[1]pose, transcriptomic data and previously published DNA microarrays were used. These species of monogeneans are commonly found in tilapia farm[1]ings. A total of 30 and 59 ABC transporters were predicted in S. longicornis and Cichlidogyrus spp., respectively. The ABCB and ABCC subfamilies were the most represented. Both species share 19 ABC genes, among which pgp-1, pgp-2, pgp-3, pgp-9, mrp-1, mrp-4, abce-1, abcf-2, wht-2, and wht-8, given their relatively higher expression levels, are likely the most important in de[1]toxification processes in Ancyrocephalidae. These results could be useful for guiding future experimental work aimed at improving control strategies for monogeneans in fish.

Keywords:
Parasites, Platyhelminthes, ABC Transporters, Tilapia, Detoxification

Article Details

References

Taylor K, Rego Alvarez L. Regulatory drivers in the last 20 years towards the use of in silico techniques as replacements to animal testing for cosmetic-related substances. Computational Toxicology. 2020;13:100112. doi:10.1016/j.comtox.2019.100112. DOI: https://doi.org/10.1016/j.comtox.2019.100112

Kashkooli FM, Soltani M, Souri M, Meaney C, Kohandel M. Nexus between in silico and in vivo models to enhance clinical translation of nanomedicine. Nano Today. 2021;36:101057. doi:10.1016/j.nantod.2020.101057. DOI: https://doi.org/10.1016/j.nantod.2020.101057

Shen D, Chang HR, Chen Z, et al. Loss of annexin A1 expression in human breast cancer detected by multiple high-throughput analyses. Biochemical and Biophysical Research Communications. 2004;326(1):218−227. doi:10.1016/j.bbrc.2004.10.214. DOI: https://doi.org/10.1016/j.bbrc.2004.10.214

Wang XS, Zhang Z, Wang HC, et al. Rapid Identification of UCA1 as a very sen

sitive and specific unique marker for human bladder carcinoma. Clinical Cancer

Research. 2006;12(16):4851−4858. doi:10.1158/1078-0432.CCR-06-0134. DOI: https://doi.org/10.1158/1078-0432.CCR-06-0134

Murray D, Doran P, MacMathuna P, Moss AC. In silico gene expression analysis – an overview. Molecular Cancer. 2007;6(1):50. doi:10.1186/1476-4598-6-50. DOI: https://doi.org/10.1186/1476-4598-6-50

Diep B, Barretto C, Portmann AC, et al. Salmonella serotyping; comparison of the traditional method to a microarray-based method and an in silico platform using whole genome sequencing data. Frontiers in Microbiology. 2019;10:2554. doi:10.3389/fmicb.2019.02554. DOI: https://doi.org/10.3389/fmicb.2019.02554

Ogawa K. Diseases of cultured marine fishes caused by Platyhelminthes (Monogenea, Digenea, Cestoda). Parasitology. 2015;142(1):178−195. doi:10.1017/S0031182014000808. DOI: https://doi.org/10.1017/S0031182014000808

Zhi T, Xu X, Chen J, et al. Expression of immune-related genes of Nile tilapia Oreochromis niloticus after Gyrodactylus cichlidarum and Cichlidogyrus sclerosus infections demonstrating immunosupression in coinfection. Fish & Shellfish Immunology. 2018;80:397−404. doi:10.1016/j.fsi.2018.05.060. DOI: https://doi.org/10.1016/j.fsi.2018.05.060

Igeh PC, Avenant–Oldewage A. Pathological effects of Cichlidogyrus philander Douëllou, 1993 (Monogenea, Ancyrocephalidae) on the gills of Pseudocrenilabrus philander (Weber, 1897) (Cichlidae). Journal of Fish Diseases. 2020;43(2):177−184. doi:10.1111/jfd.13121. DOI: https://doi.org/10.1111/jfd.13121

Prabu E, Rajagopalsamy CBT, Ahilan B, Jeevagan IJMA, Renuhadevi M. Tilapia – an excellent candidate species for world aquaculture: a review. ARRB. 2019:1−14. doi:10.9734/arrb/2019/v31i330052. DOI: https://doi.org/10.9734/arrb/2019/v31i330052

Martínez-Cordeo FJ, Delgadillo TS, Sánchez-Zazueta E, Cai J. Tilapia aquaculture in Mexico - Assessment with a focus on social and economic performance. Vol. 12019. FAO; 2021. doi:10.4060/cb3290en. DOI: https://doi.org/10.4060/cb3290en

Paredes-Trujillo A, Velázquez-Abunader I, Torres-Irineo E, Romero D, Vidal Martínez VM. Geographical distribution of protozoan and metazoan parasites of farmed Nile tilapia Oreochromis niloticus (L.) (Perciformes: Cichlidae) in Yucatán, México. Parasites Vectors. 2016;9(1):66. doi:10.1186/s13071-016-1332-9. DOI: https://doi.org/10.1186/s13071-016-1332-9

Paredes-Trujillo A, Mendoza-Carranza M, Río-Rodriguez RED, Cerqueda-García D. Comparative assessment of metazoans infestation of Nile tilapia (Oreochromis niloticus) (L.) (Perciformes: Cichlidae) in floating cages and ponds from Chiapas, Mexico. Veterinary Parasitology: Regional Studies and Reports. 2022;34:100757. doi:10.1016/j.vprsr.2022.100757. DOI: https://doi.org/10.1016/j.vprsr.2022.100757

Morales-Serna FN, Medina-Guerrero RM, Pimentel-Acosta C, Ramírez-Tirado JH, Fajer-Ávila EJ. Parasite infections in farmed Nile tilapia Oreochromis niloticus in Sinaloa, Mexico. Comparative Parasitology. 2018;85(2):212−216. doi:10.1654/1525-2647-85.2.212. DOI: https://doi.org/10.1654/1525-2647-85.2.212

Osuna-Cabanillas JM, Medina-Guerrero RM, Camacho-Zepeda S, Morales-Serna FN, Fajer-Ávila EJ. Prevalencia e intensidad de tricodínidos y monogeneos en tilapia cultivada en el suroeste de México. Ecosistemas y Recursos Agropecuarios. 2022;9(2). doi:10.19136/era.a9n2.3290. DOI: https://doi.org/10.19136/era.a9n2.3290

Aguirre-Fey D, Benítez-Villa GE, Pérez-Ponce de León G, Rubio-Godoy M. Population dynamics of Cichlidogyrus spp. and Scutogyrus sp. (Monogenea) infecting farmed tilapia in Veracruz, México. Aquaculture. 2015;443:11−15. doi:10.1016/j.aquaculture.2015.03.004. DOI: https://doi.org/10.1016/j.aquaculture.2015.03.004

Valladão GMR, Gallani SU, Pilarski F. Phytotherapy as an alternative for treating fish disease. Journal of Veterinary Pharmacology and Therapeutics. 2015;38(5):417−428. doi:10.1111/jvp.12202. DOI: https://doi.org/10.1111/jvp.12202

Matoušková P, Vokřál I, Lamka J, Skálová L. The role of xenobiotic-metabolizing enzymes in anthelmintic deactivation and resistance in helminths. Trends in Parasitology. 2016;32(6):481−491. doi:10.1016/j.pt.2016.02.004. DOI: https://doi.org/10.1016/j.pt.2016.02.004

Abaza S. Recent advances in identification of potential drug targets and development of novel drugs in parasitic diseases. Part II: Parasite targets. Parasitologists United Journal. 2022;15(1):22–38. doi:10.21608/PUJ.2022.129311.1160. DOI: https://doi.org/10.21608/PUJ.2022.129311.1160

Mate L, Ballent M, Cantón C, et al. ABC-transporter gene expression in ivermectin-susceptible and resistant Haemonchus contortus isolates. Veterinary Parasitology. 2022;302:109647. doi:10.1016/j.vetpar.2022.109647. DOI: https://doi.org/10.1016/j.vetpar.2022.109647

Langeland A, Jetter H, O’Halloran DM. The diversity of ABC transporter genes across the Phylum Nematoda. Parasitology International. 2021;83:102357. doi:10.1016/j.parint.2021.102357. DOI: https://doi.org/10.1016/j.parint.2021.102357

Caña-Bozada V, Morales-Serna FN, Fajer-Ávila EJ, Llera-Herrera R. De novo transcriptome assembly and identification of G-Protein-Coupled-Receptors (GPCRs) in two species of monogenean parasites of fish. Parasite. 2022;29:51. doi:10.1051/parasite/2022052. DOI: https://doi.org/10.1051/parasite/2022052

Caña-Bozada V, Morales-Serna FN, García-Gasca A, Llera-Herrera R, Fajer-Ávila EJ. Genome-wide identification of ABC transporters in monogeneans. Molecular and Biochemical Parasitology. 2019;234:111234. doi:10.1016/j.molbiopara.2019.111234. DOI: https://doi.org/10.1016/j.molbiopara.2019.111234

Pimentel-Acosta CA, Ramírez-Salcedo J, Morales-Serna FN, et al. Molecular effects of silver nanoparticles on monogenean parasites: Lessons from Caenorhabditis elegans. International Journal of Molecular Sciences. 2020;21(16):5889. doi:10.3390/ijms21165889. DOI: https://doi.org/10.3390/ijms21165889

Altschul S. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research. 1997;25(17):3389−3402. doi:10.1093/nar/25.17.3389. DOI: https://doi.org/10.1093/nar/25.17.3389

Finn RD, Coggill P, Eberhardt RY, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44(D1):D279−D285. doi:10.1093/nar/gkv1344. DOI: https://doi.org/10.1093/nar/gkv1344

Sheps JA, Ralph S, Zhao Z, Baillie DL, Ling V. The ABC transporter gene family of Caenorhabditis elegans has implications for the evolutionary dynamics of multidrug resistance in eukaryotes. Genome Biology. 2004;5(3):R15. doi:10.1186/gb-2004-5-3-r15. DOI: https://doi.org/10.1186/gb-2004-5-3-r15

Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology. 2011;29(7):644−652. doi:10.1038/nbt.1883. DOI: https://doi.org/10.1038/nbt.1883

De Castro E, Sigrist CJA, Gattiker A, et al. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Research. 2006;34(Web Server):W362−W365. doi:10.1093/nar/gkl124. DOI: https://doi.org/10.1093/nar/gkl124

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 2004;32(5):1792−1797. doi:10.1093/nar/gkh340. DOI: https://doi.org/10.1093/nar/gkh340

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972−1973. doi:10.1093/bioinformatics/btp348. DOI: https://doi.org/10.1093/bioinformatics/btp348

Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods. 2017;14(6):587−589. doi:10.1038/nmeth.4285. DOI: https://doi.org/10.1038/nmeth.4285

Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution. 2015;32(1):268−274. doi:10.1093/molbev/msu300. DOI: https://doi.org/10.1093/molbev/msu300

Rambaut, A. Figtree 1.4.4. http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 31 July 2020).

Cheadle C, Vawter MP, Freed WJ, Becker KG. Analysis of microarray data using z score transformation. The Journal of Molecular Diagnostics. 2003;5(2):73−81. doi:10.1016/S1525-1578(10)60455-2. DOI: https://doi.org/10.1016/S1525-1578(10)60455-2

Wurmbach E, Yuen T, Sealfon SC. Focused microarray analysis. Methods. 2003;31(4):306−316. doi:10.1016/S1046-2023(03)00161-0. DOI: https://doi.org/10.1016/S1046-2023(03)00161-0

Cvilink V, Lamka J, Skálová L. Xenobiotic metabolizing enzymes and metabolism of anthelminthics in helminths. Drug Metabolism Reviews. 2009;41(1):8−26. doi: 10.1080/03602530802602880. DOI: https://doi.org/10.1080/03602530802602880

McColl ER, Vassileva V, Piquette-Miller M. Drug Transporters: Efflux. In: Comprehensive Pharmacology. Amsterdam, Netherlands: Elsevier; 2022. pp. 608−626. doi:10.1016/B978-0-12-820472-6.00054-2. DOI: https://doi.org/10.1016/B978-0-12-820472-6.00054-2

Sepúlveda–Crespo D, Reguera RM, Rojo–Vázquez F, Balaña–Fouce R, Martínez–Valladares M. Drug discovery technologies: Caenorhabditis elegans as a model for anthelmintic therapeutics. Medicinal Research Reviews. 2020;40(5):1715−1753. doi:10.1002/med.21668. DOI: https://doi.org/10.1002/med.21668

Kruh GD, Belinsky MG. The MRP family of drug efflux pumps. Oncogene. 2003;22(47):7537−7552. doi:10.1038/sj.onc.1206953. DOI: https://doi.org/10.1038/sj.onc.1206953

Daood MJ, Ahdab-Barmada M, Watchko JF. Comparison of multidrug resistance protein-1 (MRP-1) and P-glycoprotein (PGP) expression in the developing human central nervous system: cellular and tissue localization. Pediatric Research. 2004;56(4):673−673. doi:10.1203/00006450-200410000-00062. DOI: https://doi.org/10.1203/00006450-200410000-00062

Kerboeuf D. P-glycoprotein in helminths: function and perspectives for anthelmintic treatment and reversal of resistance. International Journal of Antimicrobial Agents. 2003;22(3):332−346. doi:10.1016/S0924-8579(03)00221-8. DOI: https://doi.org/10.1016/S0924-8579(03)00221-8

Gerhard AP, Krücken J, Heitlinger E, et al. The P-glycoprotein repertoire of the equine parasitic nematode Parascaris univalens. Scientific Reports. 2020;10(1):13586. doi:10.1038/s41598-020-70529-6. DOI: https://doi.org/10.1038/s41598-020-70529-6

Martin F, Dube F, Karlsson Lindsjö O, et al. Transcriptional responses in Parascaris univalens after in vitro exposure to ivermectin, pyrantel citrate and thiabendazole. Parasites Vectors. 2020;13(1):342. doi:10.1186/s13071-020-04212-0. DOI: https://doi.org/10.1186/s13071-020-04212-0

Williamson SM, Storey B, Howell S, Harper KM, Kaplan RM, Wolstenholme AJ. Candidate anthelmintic resistance-associated gene expression and sequence polymorphisms in a triple-resistant field isolate of Haemonchus contortus. Molecular and Biochemical Parasitology. 2011;180(2):99−105. doi:10.1016/j.molbiopara.2011.09.003. DOI: https://doi.org/10.1016/j.molbiopara.2011.09.003

Kaur J, Dey CS. Putative P-glycoprotein expression in arsenite-resistant Leishmania donovani down-regulated by verapamil. Biochemical and Biophysical Research Communications. 2000;271(3):615−619. doi:10.1006/bbrc.2000.2680. DOI: https://doi.org/10.1006/bbrc.2000.2680

Wartenberg M, Ling FC, Schallenberg M, et al. Down-regulation of Intrinsic P-glycoprotein expression in multicellular prostate tumor spheroids by reactive oxygen species. Journal of Biological Chemistry. 2001;276(20):17420−17428. doi:10.1074/jbc.M100141200. DOI: https://doi.org/10.1074/jbc.M100141200

Russel F, Koenderink J, Masereeuw R. Multidrug resistance protein 4 (MRP4/ ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends in Pharmacological Sciences. 2008;29(4):200−207. doi:10.1016/j.tips.2008.01.006. DOI: https://doi.org/10.1016/j.tips.2008.01.006

Yan R, Urdaneta-Marquez L, Keller K, James CE, Davey MW, Prichard RK. The role of several ABC transporter genes in ivermectin resistance in Caenorhabditis elegans. Veterinary Parasitology. 2012;190(3−4):519−529. doi:10.1016/j.vetpar.2012.06.038. DOI: https://doi.org/10.1016/j.vetpar.2012.06.038

Raza A, Bagnall NH, Jabbar A, Kopp SR, Kotze AC. Increased expression of ATP binding cassette transporter genes following exposure of Haemonchus contortus larvae to a high concentration of monepantel in vitro. Parasites Vectors. 2016;9(1). Art no 522. doi:10.1186/s13071-016-1806-9. DOI: https://doi.org/10.1186/s13071-016-1806-9

Raza A, Kopp SR, Bagnall NH, Jabbar A, Kotze AC. Effects of in vitro exposure to ivermectin and levamisole on the expression patterns of ABC transporters in Haemonchus contortus larvae. International Journal for Parasitology: Drugs and Drug Resistance. 2016;6(2):103−115. doi:10.1016/j.ijpddr.2016.03.001. DOI: https://doi.org/10.1016/j.ijpddr.2016.03.001

James CE, Hudson AL, Davey MW. Drug resistance mechanisms in helminths: is it survival of the fittest? Trends in Parasitology. 2009;25(7):328−335. doi:10.1016/j.pt.2009.04.004. DOI: https://doi.org/10.1016/j.pt.2009.04.004